ILLUSTRATED CATALOGUE

OF THE

MUSEUM OF COMPARATIVE ZOOLOGY,

AT HARVARD COLLEGE.

Published by order of the Legislature of Massachusetts.

No. II.

NORTH AMERICAN ACALEPHÆ.

by

ALEXANDER AGASSIZ.

CAMBRIDGE:
FOR SALE BY SEVER AND FRANCIS.
1865.
ILLUSTRATED CATALOGUE

OF THE

MUSEUM OF COMPARATIVE ZOOLOGY,

AT HARVARD COLLEGE.

Published by order of the Legislature of Massachusetts.

No. II.

NORTH AMERICAN ACALEPHÆ.

by

ALEXANDER AGASSIZ.

CAMBRIDGE:
FOR SALE BY SEVER AND FRANCIS.
1865.
THE publication of the Illustrated Catalogue of the Museum of Comparative Zoölogy has been undertaken with a threefold object. In the first place, like the catalogues of most institutions of a similar character, it is intended to make the contents of our Museum generally known, and to facilitate our exchanges. In the second place, to be the medium of publication of the novelties received at the Museum, which require to be described and illustrated by diagrams or wood-cuts, or more elaborate plates. Finally, it is hoped that it may be the basis of a systematic revision of such natural groups of the animal kingdom as are most fully represented in our collections, and that it may, as far as possible, present to the scientific world the results of the investigations carried on in the Museum with a view of ascertaining the natural limits of the Fauna at the present time and in past ages, and the genetic relations which may exist between the order of succession of organized beings upon the earth, their mode of growth, and their metamorphoses during their embryonic life, and the plan and complication of their structure in their adult condition.

The means for publishing this work have been most liberally granted by the Legislature, at a time when, in a less enlightened assembly, the material cares of the community would have engaged their exclusive attention.

L. AGASSIZ.

Cambridge, March 28, 1865.
PREFACE.

The progress of our knowledge of the Class of Acalephs is at present so closely linked with every new observation which may be brought up in the history of the development of these animals, that it has been thought advisable to extend this Catalogue somewhat, and not make it simply an enumeration of the Acalephs in the collection of the Museum of Comparative Zoology at Cambridge. It has, however, been limited to the North American species; and even many of the Sertularians, Campanularians, and Tubularians in the collection are not described or mentioned here, because our information with regard to them is too scanty to be available. The mere enumeration, with short descriptions, of Hydroids, the development of which has not been fully traced, would probably only add, in the course of a few years, synonyms to some of the Medusae, the adult stages of which may be well known, and would not advance in the least degree our acquaintance with the North American Acalephs. To make this Catalogue useful to American students, a few species described by other authors, of which there are no specimens in the Museum collection, are added, to facilitate further investigations. This is done with the less hesitation, as it is hoped that in a short time most of the species thus enumerated will have been figured in the diagrams of the Museum.

In the descriptions of the species, constant reference has been made to the bearing of the facts discussed, on the classification of Acalephs, and consequently much has been introduced which would be out of place in a descriptive catalogue. The wood-cuts, with the exception of a few borrowed from the Contributions to the Natural History of the United States by Professor Agassiz, have all been drawn on wood from nature by myself, and, though not highly finished, will yet generally give a better idea of the Acalephs, in this simple outline, than could have been done by a more finished wood-cut. Such an elaborate catalogue of Acalephs may seem somewhat out of place.
here, but as special attention has been paid to them in the Museum at Cambridge, and as Professor Agassiz has introduced there a large number of diagrams, all copied from original drawings, to illustrate the structure and colors of animals which were too small or too perishable to be preserved in the ordinary way, these valuable materials have been extensively used in the preparation of this Catalogue, as forming actually a part of the collections exhibited in the show-cases. The diagrams, as well as the authorities from which they are taken, are carefully enumerated below, after the specimens preserved in the collection.

For the facilities I have enjoyed in collecting the materials for this Catalogue I am mainly indebted to Mr. and Mrs. J. M. Forbes, to Professor A. D. Bache, Superintendent of the Coast Survey, to Mr. T. G. Cary, and to Professor Agassiz. I have also to thank, for specimens and valuable information, Professor Joseph Leidy, Dr. Fritz Müller of Deistero, Dr. W. Stimpson, and Professor H. J. Clark, who had already arranged the greater part of the Hydroids before the collection of Aclephs was placed in my charge. The Museum is also indebted for specimens to many other persons, whose names will be referred to in connection with the different species.

Cambridge, Mass., February, 1865.

A. AGASSIZ.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of the Wood-cuts</td>
<td>viii</td>
</tr>
<tr>
<td>Bibliography</td>
<td>3</td>
</tr>
<tr>
<td>Ctenophore</td>
<td>7</td>
</tr>
<tr>
<td>Discophore</td>
<td>40</td>
</tr>
<tr>
<td>Hydroiide</td>
<td>64</td>
</tr>
<tr>
<td>Geographical Distribution</td>
<td>221</td>
</tr>
<tr>
<td>Systematic Table of the Orders and Families</td>
<td>227</td>
</tr>
<tr>
<td>Index of Genera and Species</td>
<td>229</td>
</tr>
</tbody>
</table>
LIST OF THE WOOD-CUTS.

[Note.—Unless otherwise credited, the Figures are drawn from nature by Alex. Agassiz.]

Fig. 1. Young Bolina Alata, seen from the narrow side

" 2. Bolina in state of Fig. 1, seen from the broad side

" 3. Somewhat younger than Fig. 1, seen from the abactinal pole

" 4. Young Bolina, seen from the abactinal pole, older than previous figures

" 5. Formation of lateral tubes in young Bolina

" 6. Bolina in which lobes begin to appear, seen from the narrow side, same state as Fig. 4

" 7. Somewhat more advanced than Fig. 6, seen from the actinal side

" 8. The tentacular ambulacra have united, and the lobes project well beyond the opening of the mouth

" 9. About in the condition of Fig. 1, seen from the broad side

" 10. Somewhat younger than Fig. 8, seen from the broad side

" 11. Fig. 8, seen from the broad side

" 12. Bolina showing first appearance of the auricles, seen from the broad side

" 13. Bolina in stage of Fig. 12, seen from the narrow side

" 14. Fig. 13, seen from the actinal pole

" 15. Adult Bolina, seen from the broad side. (L. Agassiz.)

" 16. Fig. 15, seen from the narrow side. (L. Agassiz.)

" 17. Bolina, seen from the actinal pole. (L. Agassiz.)

" 18. Bolina, seen from the abactinal pole. (L. Agassiz.)

" 19. Bolina vitrea, seen from the broad side. (L. Agassiz.)

" 20. Mnemopsis Gardemi, seen from the broad side. (L. Agassiz.)

" 21. Fig. 20, seen from the actinal pole. (L. Agassiz.)

" 22. Mnemopsis Leidyi, seen from the broad side

" 23. Same as Fig. 22, seen from the narrow side

" 24. A part of the tentacular apparatus near the opening of the actinostome

" 25. Leptura Hysteroidea, seen from the broad side

" 26. Fig. 25, seen from the narrow side

" 27. The same, seen from the abactinal pole

" 28. Seen from the actinal pole

" 29. Adult Mertensia ovum, seen from the broad side

" 30. Young Mertensia, seen from the broad side

" 31. Fig. 30, seen from the abactinal pole

" 32. Somewhat more advanced Mertensia, seen from the narrow side

" 33. Same as Fig. 32, seen from the actinal pole

" 34. Still more advanced Mertensia, seen from the narrow side

" 35. Fig. 34, seen from the actinal pole

" 36. Still further advanced Mertensia, seen from the broad side

" 37. Young Mertensia, about in the same condition as that of the preceding figure, seen from the narrow side

" 38. Young Pleurobrachia rhododactyla, seen from the broad side

" 39. Same as Fig. 38, seen from the narrow side

" 40. Same as Fig. 38, seen from below

" 41. Somewhat more advanced, seen from the broad side
LIST OF THE WOOD-CUTS.

Fig. 42. Fig. 43, seen from above .. 30
43. Fig. 42, seen from the broad side 30
44. Pleurobrachia, immediately before the escape from the egg 31
45. Fig. 44, somewhat less magnified, to show the relative size of the egg-case and the embryo 31
46. Fig. 44, seen from the actinal pole 32
47. Pleurobrachia swimming freely about, seen from the broad side 32
48. Somewhat less advanced than Fig. 47, showing the lateral tubes from the narrow side, as a prolongation of the ambulacral cavity 33
49. Pleurobrachia about in state of Fig. 47, seen from the actinal pole .. 33
50. Adult Pleurobrachia, natural size, from broad and narrow side 33
51. Adult Pleurobrachia in a natural attitude, natural size 33
52. Young Ilydia roseola, seen from the narrow side 36
53. Fig. 52, seen from the abactinal pole 36
54. Young Ilydia, with distinct ambulacral tubes, seen from the narrow side ... 36
55. Fig. 54, seen from the abactinal pole 37
56. Somewhat more advanced than Fig. 54, seen from the broad side 37
57. The long chymiferous tubes extend to the level of the actinostome . 37
58. The long chymiferous tubes have united with the lateral tubes; first trace of the ramifications of the long tubes 37
59. The short ambulacra have nearly united with the circular tube 37
60. The circuit is now complete between the short and long ambulacra; the spurs or ramifications of the chymiferous tubes are numerous, resembling somewhat those of the adult .. 37
61. Fig. 57, seen from the abactinal pole 38
62. Adult Ilydia, reduced in size one half. (L. Agassiz.) 38
63. Idyopsis Clarkii, seen from the broad side. (L. Agassiz.) 39
64. Fig. 63, seen from the abactinal pole. (L. Agassiz.) 39
65. Profile view of Aurelia flavidula, much reduced. (L. Agassiz.) 42
66. Abactinal view of Aurelia flavidula. (L. Agassiz.) 42
67. Cyanea arctica, very much reduced. (L. Agassiz.) 45
68. Pelagia cyanea. (L. Agassiz.) .. 47
69. Dactylometra quinquedentata, reduced about one fourth 48
70. Profile view of Campanella pachyderma 53
71. Actinal view of Fig. 70 .. 53
72. A somewhat more magnified view of Fig. 71 53
73. View of part of the actinal surface 53
74. Magnified profile view of portion of the base of a tentacle . 53
75. View of basal portion of tentacle, seen from above 53
76. Profile view of Trachynema catschaticum 56
77. One of the genital organs .. 56
78. Section of Trachynema .. 56
79. Chymiferous cavity at the end of the gelatinous proboscid 56
80. View of Trachynema from above .. 56
81. Adult female Trachynema digitale, seen in profile 57
82. Actinal view of the veil and circular tube of a very young Trachynema ... 57
83. Profile view of a part of the circular tube 57
84. Profile view of a young Trachynema, about one eighth of an inch in height ... 58
85. Somewhat more advanced than Fig. 84 58
86. Young Trachynema, measuring over one third of an inch in height .. 59
87. T. libirafa scutiger a. (L. Agassiz.) 59
88. Halicystus auricula, seen from the actinal pole 60
89. Different attitudes of Halicystus auricula, attached to cel-grass .. 63
90. Young Halicystus auricula, magnified 63
91. Tiaropsis diademata, natural size. (L. Agassiz.) 63
92. Young Tiaropsis, having twenty-four tentacles 69
93. Young Tiaropsis, having forty tentacles. (L. Agassiz.) 69
94. Two marginal tentacles of Oceania languiida, with a portion of the circular tube 70
95. Magnified view of the actinostome 71
Fig. 96. Young Medusa of Oceania languida, immediately after escaping from the reproductive calyce

97. The same, seen from the abactinal pole
98. Somewhat more advanced Medusa
99. Quarter of the disk of a still more advanced Oceania
100. Adult Oceania languida, natural size
101. Magnified view of an ovary
102. Peculiar attitude sometimes assumed by the Medusa
103. One of the four lips of the actinostome of Oceania gregaria
104. Eucheilota ventricularis
105. More magnified view of a quarter of the disk
106. Eucheilota duodecimalis
107. Junction of one of the chymiferous tubes with the circular tube
108. Clytia bicophora, immediately after its escape from the reproductive calyce
109. A somewhat older Medusa
110. An adult Medusa, measuring a quarter of an inch
111. Sterile Hydra and reproductive calyce, seen from the broad side
112. Reproductive calyce of Platypyxis cylindrica, seen from the broad side
113. The same, seen from the narrow side
114. Sterile Hydra of Platypyxis cylindrica. (L. Agassiz.)
115. A Eucope diaphana, seen in profile, just after its escape from the reproductive calyce
116. Quarter of the disk of the same, seen from above
117. A more advanced Eucope, with the second set of tentacles
118. An adult Eucope, seen in profile
119. Quarter of Fig. 118, more magnified
120. Magnified view of the circular tube of a young Eucope
121. Spermaries of Eucope
122. Female genital organs
123. Proboscis of an adult Medusa
124. Hydrarium of Eucope diaphana, natural size
125. Magnified view of a sterile Hydra and reproductive calyce
126. Magnified view of part of main stem of Eucope polygena
127. Eucope pyriformis, seen in profile
128. Quarter-disk of same Medusa
129. Portion of a Hydrarium of Fig. 127
130. Quarter-disk of Eucope articulata
131. Portion of a Hydrarium of Eucope articulata
132. Hydrarium of Eucope fusiformis
133. Quarter-disk of the Medusa of Fig. 132
134. Portion of stem of Hydrarium of Obolella commissuralis
135. Quarter-disk of the Medusa of Fig. 134
136. Profile view, natural size, of Rhigmatodes tenuis
137. Quarter-disk of Fig. 136, seen from the actinal side
138. Magnified portion of the circular canal
139. Rhigmatodes floridanus, natural size. (L. Agassiz.)
140. Actinostome of Stomobrachium tenticulatum, magnified
141. Stomobrachium tenticulatum, seen from the abactinal pole, natural size
142. Same as Fig. 141, seen in profile
143. Portion of the disk of Halopsis ocellata, seen from the abactinal pole, somewhat reduced
144. Cavity from which the chymiferous tubes radiate
145. Profile, natural size, of Halopsis ocellata
146. Magnified part of circular tube
147. Magnified view of one of the eyes
148. Young Halopsis ocellata, natural size
149. Young Halopsis ocellata, one fifth of an inch in height
150. Magnified portion of circular tube of Fig. 149
LIST OF THE WOOD-CUTS.

Fig. 151. Profile view, somewhat magnified, of Halopsis cruciata. 192
152. Natural attitude of the same Medusa (Fig. 154) 192
153. Abaxial view of Zygodauctyla groenlandica 194
154. Profile view of Fig. 153, half natural size 194
155. Portion of the circular tube 194
156. Young Zygodauctyla, greatly magnified 195
157. Profile view of Zygodauctyla crassa, somewhat reduced in size 196
158. Quarter-disk of Zygodauctyla crassa 197
159. Portion of the disk of Zygodauctyla cyaena, from the abaxial pole. (L. Ag.) 197
159. Crematostoma Flava, in profile 199
160. Portion of the disk of Acquorea albida, from the abaxial pole 110
161. A natural attitude of Acquorea albida 110
162. Magnified view of the marginal tube 111
163. Eirené cornula. (L. Agassiz.) 112
164. Timia formosa, half natural size 113
165. Quarter of the disk, from the abaxial pole, natural size 113
166. Digestive cavity and actinocone 113
167. Portion of the ovary 114
168. Magnified portion of the circular tube 114
169. Young Timia formosae, natural size 114
170. Digestive cavity of Fig. 169 114
171. Young Planula of Timia 115
172. Single Hydra of the tuft of a Timia Hydrarium, greatly magnified 115
173. Profile of Eutima limpid, reduced in size 116
174. Quarter-disk of Fig. 173 116
175. Magnified view of proboscis and genital organs 117
176. Magnified portion of a part of the circular canal 117
177. Magnified marginal capsule 117
178. Magnified view of the rudimentary tentacles 117
179. Profile view, somewhat magnified, of Polyychis penicillata 119
180. Ovaries of one of the chymiferous tubes 119
181. Section of bell 120
182. Part of disk of Fig. 179, seen from the abaxial pole 120
183. Two of the marginal tentacles in a contracted state 120
184. Adult Medusa of Laece calcarea 122
185. One of the ovaries and the actinocone 123
186. Actinocone, actual view 123
187. Magnified view of a portion of the circular tube 123
188. Actinocone and rudimentary ovaries, seen in profile 123
189. Different attitude of Medusa of Fig. 184 124
190. Hydrarium of Laece calcarea 124
191. Reproductive calyce 125
192. Medusa immediately after its escape from the reproductive calyce 125
193. Medusa somewhat more advanced, from the abaxial pole 125
194. Young Medusa still further advanced than Fig. 193 126
195. Laece calcarea 127
196. One of the lips of the actinocone 127
197. Gonionemus vertens, attached by its tentacles 129
198. The same in motion, natural size 129
199. Base of a contracted tentacle 130
200. A portion of the genital organs 130
201. One of the chymiferous tubes and half the digestive cavity 130
202. Profile of Melicertum campanula, natural size 131
203. Profile view of a very young Melicertum campanula 132
204. Half the disk of the same, seen from the actinal pole 132
205. Young Melicertum, having only four completely formed chymiferous tubes 132
206. Same, seen from the abaxial pole 133
207. Magnified view of the two chymiferous tubes and genital glands 133
208. Mode of carrying the lips of actinocone 133
LIST OF THE WOOD-CUTS.

Fig. 260. Magnified view of marginal tentacles .. 133

120. Spherical embryo .. 134

121. The same, somewhat more advanced ... 134

122. The same before it becomes attached ... 134

123. Group of embryos attached, in different stages of development 131

124. Different stages of growth beyond those of Fig. 213 134

125. Profile of Melicertum georgium, natural size 135

126. Digestive cavity and point of junction of the chymiferous tubes 135

127. Staurophora laciniata, having eight tentacles 136

128. Quarter of the disk of a young Staurophora, with sixteen large tentacles 136

129. Young Medusa somewhat more advanced than Fig. 216 136

130. Different stages of actinostome intermediate between that of Figs. 215 and 136

131. Young Staurophora, having the aspect of the adult 137

132. Profile view of Ptychogena lactea, somewhat reduced 138

133. Magnified view of Gentl's organs, seen from the abactinal pole 138

134. Same as Fig. 221, seen in profile ... 138

135. Actinostome ... 138

136. Magnified base of tentacles and club-shaped appendages 138

137. Cluster of Dynamena pomilla. (L. Agassiz) ... 141

138. Magnified portion of stem of Fig. 225. (L. Agassiz) 141

139. Young Nemopsis Rachel, with four tentacles 149

140. Somewhat more advanced Nemopis .. 150

141. Magnified view of the sensitive bulb .. 150

142. Nemopis in which the genital organs extend a considerable distance along the 150

143. Magnified view of the genital organs, the actinostome, and the oral tentacles 151

144. Magnified profile view of adult Bougainvillia superciliaris 153

145. Hydromedusarian of Bougainvillia .. 154

146. Young elongated Medusa .. 154

147. Somewhat more advanced than Fig. 234 .. 154

148. Appearance a short time before separating from the stem 154

149. Same as Fig. 236, expanded ... 154

150. Young Bougainvillia, immediately after its liberation from the Hydromedusarian 154

151. Magnified view of sensitive bulb .. 155

152. Tentacular bulb, with young tentacles .. 155

153. Adult Margelis carolinensis, seen in profile, magnified 156

154. Digestive cavity, genital pouches, oral tentacles, and actinostome 156

155. Sensitive bulb at base of one of the chymiferous tubes 156

156. Young Margelis, having only two marginal tentacles at the base of each chymiferous tube .. 157

157. Young Margelis, seen from the abactinal pole, in condition of Fig. 244 157

158. Proboscis of a Margelis, having already six tentacles at each sensitive bulb 158

159. Hydrarium, greatly reduced in size ... 158

160. Magnified heads and Medusa buds of Margelis carolinensis 158

161. Female Medusa buds of Eudendrium dispar, in different stages of development 159

162. Part of a male colony of Eudendrium tenue, magnified 160

163. Adult male of Lizzia grata, seen in profile, magnified 161

164. Quarter-disk of a young Lizzia ... 161

165. Magnified view of sensitive bulb .. 161

166. Proboscis of male Lizzia, magnified ... 162

167. One of the four lobes of the actinostome, seen from above 162

168. Actinal view of proboscis of young Lizzia ... 162

169. Actinal view of proboscis of an older specimen 162

170. Alabastical view of Fig. 257, somewhat less magnified 162

171. Adult Dysmorphosia fulgurans, magnified .. 163

172. Magnified proboscis, showing young Medusae of the second and third generations 163

173. Turris vesicaria, natural size, seen in profile 165

174. The same, with the bell contracted ... 165

175. A portion of the disk, seen from the abactinal pole 165
LIST OF THE WOOD-CUTS.

Fig. 264. Magnified profile view of genital organs and actinostome 165
265. Magnified view of a part of a chymiferous tube ... 166
266. Base of one of the chymiferous tubes, and part of the circular tube 166
267. One of the tentacles, in a profile view .. 166
268. One of the tentacles, seen from the abactinal pole .. 166
269. Young Territorios nutricula, with four marginal tentacles 167
270. Somewhat more advanced, having sixteen tentacles ... 167
271. STOMOTOCA ATRA, somewhat magnified, seen in profile 169
272. Magnified view of genital organs ... 169
273. STOMOTOCA ATRA .. 169
274. CLAVA LEPTOSTYLA. (L. Agassiz.) .. 170
275. Young Willia ornata, having only the second set of tentacles developed 171
276. Young Willia, nearly in the stage of Fig. 276, seen from the abactinal pole 171
276. Profile view of a young Willia ... 172
277. Part of the circular tube ... 172
278. View of ovary of Fig. 276 ... 172
279. Same as Fig. 278, seen from the abactinal pole ... 172
280. PROBOSCICACTYLA FLAVICHERATA .. 173
281. Actinostome and digestive cavity ... 173
282. Portion of disk to show mode of branching of chymiferous tubes, and tubes con-
 taining lasso-cells, as in Willia .. 174
283. Adult Coryne mirabilis, seen in profile. (L. Agassiz.) 175
284. Coryne, with proboscis contracted. (L. Agassiz.) .. 175
285. Coryne, with expanded proboscis. (L. Agassiz.) .. 175
286. Cluster of Hydraria of Coryne mirabilis. (L. Agassiz.) 176
287. Young Hydrarium of Coryne. (L. Agassiz.) ... 176
288. Magnified view of head, with Medusae buds attached. (L. Agassiz.) 176
289. Coryne rosea, natural size .. 177
290. Hydromedusarium of Syndictyon reticulatum, greatly magnified 178
291. Syndictyon reticulatum, immediately after it has become freed from the Hyd-
 romedusarium, in profile ... 178
292. One of the tentacles of Fig. 291, magnified .. 178
293. Sensitive bulb of Fig. 291 .. 178
294. Digestive cavity of Fig. 291 ... 178
295. Fig. 291, from actinal pole .. 178
296. Fig. 291, from abactinal pole ... 178
297. Part of net-work of lasso-cells of surface of spherosome 179
298. Adult Medusa in a natural attitude ... 180
299. Same Medusa (Fig. 298) with the tentacles contracted 180
300. Actinostome of adult Medusa ... 180
301. Young Diporena conica ... 181
302. Digestive cavity of a young Diporena conica .. 181
303. Tentacle of Diporena conica ... 182
304. Digestive cavity of a Medusa in which the constriction has already separated the
 upper and lower halves ... 182
305. Adult Diporena conica, in which the two digestive cavities are widely separated 182
306. Profile view of half a young Gemmaria gemmosa .. 184
307. Profile view of Gemmaria cladosiphona, magnified .. 184
308. Quarter-disk of same, seen from the abactinal pole ... 185
309. Actinostome of Gemmaria, enlarged .. 185
310. Cluster of lasso-cells of the marginal tentacles ... 185
311. Fortile Hydra of Pennaria tiarella ... 187
312. Medusa distended by eggs .. 187
313. Profile view of Medusa of Pennaria tiarella .. 187
314. Different attitude of the Medusa, seen from the actinal pole 188
315. Fig. 313, seen from the abactinal pole ... 188
316. Euphysa virgulata, seen in profile .. 190
317. Magnified proboscis of Fig. 316 ... 190
318. Actinal view of Euphysa virgulata ... 190
Fig. 319. One of the tentacles, seen in profile .. 190
320. Profile of Ectopleura ochracea, magnified .. 191
321. The same, seen from the abactinal pole .. 192
322. The same, seen from the actinal pole .. 192
323. The base of one of the tentacles, magnified .. 192
324. Medusa of Corynusphera pendula, seen in profile. (H. J. Clark.) 193
325. Single Hydra of Ilybocodon prolifer. (L. Agassiz.) 193
326. Hybocodon prolifer, seen from the broad side. (L. Agassiz.) 194
327. Hybocodon prolifer, seen facing the long tentacle. (L. Agassiz.) 194
328. Medusa bud of Ilybocodon prolifer. (L. Agassiz.) 194
329. Part of male community of Hydractinia polyclina. (L. Agassiz.) 198
330. Part of female community. (L. Agassiz.) ... 198
331. Oid-float of Nanomia cara, magnified .. 200
332. Nanomia cara, natural size .. 201
333. Swimming-bell of Nanomia cara, seen facing the side of the straight chymiferous tubes .. 202
334. The same bell, from the actinal pole ... 202
335. Portion of the same bell, seen from the abactinal pole 202
336. Same bell as Fig. 332, seen from the other side 203
337. Group of swimming-bells in different stages of development 203
338. Cluster of Medusae (Polype) of first kind formed, with knob-shaped tentacles .. 204
339. Enlarged view of the knob of a tentacle of the first kind of Medusae 205
340. Second kind of Medusae, with corks-shaped tentacles 205
341. Third kind of Medusa, having a single thread-like tentacle 205
342. Cluster of Medusae (Polype), in different stages of development, before the appearance of the scale and of the tentacles .. 206
343. Knobs like those of Fig. 339, in different stages of development 207
344. Same kind of knot, still further developed .. 207
345. Young scale, seen from different sides ... 207
346. Youngest Nanomia found swimming on surface 208
347. Somewhat more advanced ... 208
348. The terminal Hydra is open, tentacles are developed as well as clusters of small swimming-bells .. 209
349. Still more advanced Nanomia ... 209
350. Young Nanomia, where we find several Medusae of the first kind 209
351. Physalia aequihsa TIl. (L. Agassiz.) ... 214
352. Bunch of single Hydras and clusters of Medusae of Physalia. (L. Agassiz.) 215
353. Bunch of Hydras. (L. Agassiz.) ... 215
354. Bunch of Medusae in various stages of development. (L. Agassiz.) 215
355. Enlarged view of one of the fertile Hydras of Velevia mutica. (L. Agassiz.) 216
356. Velevia, seen from below, to show the Hydra. (L. Agassiz.) 216
357. Magnified view of a free Medusa of Velevia mutica. (L. Agassiz.) 216
358. Magnified view of extended Hydroids of Millepora alcicornis. (L. Agassiz.) 219
359. Branch of Millepora alcicornis, natural size. (L. Agassiz.) 219
360. Transverse section of a branch. (L. Agassiz.) .. 219
NORTH AMERICAN ACALEPHÆ.
BIBLIOGRAPHY.

No memoirs published previous to 1860 have been included in this list, as they can be found in Agassiz's Bibliographia Zoologicæ et Geologicæ, and in Carus and Engelmann's Bibliotheca Zoologica.

Agassiz, L. "Methods of Study in Natural History." Boston. 1863.

"Description of some New and Rare Zoophytes found on the Coast of Northumberland;" in Ann. & Mag. N. II., IX. p. 311. 1862.

" in Bibliogr. Univ. de Genève, XV. p. 150. 1862.

CLARK, H. J. Lucernaria, the Genotype of Acalyphe; in Proc. Rost. Soc. N. H., p. 47. 1862.

GOSSE, P. H. Evenings with the Microscope. New York. 1864.

" Recent Contributions to the Literature of the Sub-kingdom Coelenterata; in Nat. Hist. Rev., I. 1861.

GRUBE, E. Ausflug nach Triest u. dem Quarnero. Berlin. 1861.

BEKANNUNGEN OBER NOBSE CALENTHERAU; IN VIDENS. SELKS. FORH., P. 140. CHRISTIANIA. 1860.

TEGNERINGER AF OG OPFANGEN OM NAGLE CALENTHERAU FRA NORGES KYSTER; IN SKAND. NATURF. MOLDE I KJØBENHAVN. 1860. P. 690.

ON THE NAUSE GENUS CORYNOMAPA AND ITS SPECIES, TOGETHER WITH THE MEDUSAE PRODUCED FROM THEM; IN ANN. & MAG. N. H., VIII. P. 455. 1861.

BEMANNUNGEN OBER D. NOBSE HYDROIIDER; IN VIDENS. SELKS. FORHANDB. 1862.

GEOLoGISCHE O AO ZOOGOLOGISCHE JAGTTAGELSER ANSTILLADE PAA EN REISE I EN DEEL AF TRONDHLJEMS STIFT. CHRISTIANIA. 1863.

STENSTRUP, J. B. Om de ved Norges Kyst forekomnende Arter af Slægtcn Lucinaria; in FORHANDL. VID. SELKS. I CHRISTIANIA. AAR 1860. CHRISTIANIA. 1861. P. 145.

BIDRAG TIL KUNDAB OM DE NORDSKE LUCINARIAR; IN VIDENS. MED. 1859, P. 106. KJØBENHAVN. 1860.

VERRILL, A. E. List of Polyps and Corals sent by the Museum of Comparative Zoology to other Institutions in Exchange, with Annotations; in Bulletin Museum Comparative Zoology, No. 3. Cambridge. 1864.

OBSERVATIONS ON BRITISH ZOOPHYES AND PROTOZOA; IN EDINB. NEW PHIL. JOURN., XVI. P. 154. 1862.

OBSERVATIONS ON BRITISH ZOOPHYES; IN QUART. JOURN. MIC. SCICN., P. 43. 1863.

THE REPRODUCTION OF EQUOREA VITREA; IN EDINB. NEW PHIL. JOURN., XV. P. 144. 1862.

OBSERVATIONS ON BRITISH PROTOZOA AND ZOOPHYES; IN ANN. & MAG. N. H., VIII. P. 129. 1861.

ON HERMAPHRODITE REPRODUCTION IN CHRYSANORA HYOCELLA; IN ANN. & MAG. N. H., VII. P. 357. 1861.

OBSERVATIONS ON BRITISH ZOOPHYES AND PROTOZOA; ON ATRACTYLIS COCCINCA; IN EDINB. NEW PHIL. JOURN., XIV. P. 150. 1861.

NORTH AMERICAN ACALEPHE.

ORDER CTENOPHORÆ ESCH.

Ctenophora Esch. Syst. der Acalephen, p. 29. 1829.

The affinities of the Ctenophora have become one of the most fertile topics of discussion among recent investigators. Vogt, following Quoy, removes them from the Acalephs altogether. Huxley places them in close proximity to Polyps. Clark has made a special class of them, equivalent to Echinoderms, while Milne Edwards and Agassiz, after a careful revision of the whole subject, have followed Cuvier and Eschscholtz, and retained them as an order of Acalephæ. These various views of the true relations of the Ctenophora are based upon very different grounds, and are urged with more or less force in accordance with the degree of importance attached by investigators to the details of structure upon which they separate the Ctenophora from the Acalephæ, and refer them to other classes of the Animal Kingdom; the apparent bilaterality so strongly developed in some of the families (as Cestum, Bolina, and Mertensia) being urged by Vogt as the principal ground for removing them from Acalephs, and associating them with the Mollusks; while Huxley places them with Polyps on the ground of the special structure of their digestive cavity; and Clark simply states his belief in their separation as a class, without furnishing us any proofs. We are able to throw new light on this question by a series of facts derived from their embryological development, hitherto unnoticed. As the observations of Dujardin on the development of Coryne gave us the key which led to the ultimate separation of the Hydrozoans from the Polyps, so I hope to be able to show that the development of the Ctenophora gives us a true insight into the disputed affinities of these animals.

Before the publication of the valuable observations of McCrady on the development of a species of Bolina, little was known of their embryology except the mere fact, derived from the few casual observations of Müller, Wright, Boeck, and Price, that the Ctenophora were probably all repro-
duced from eggs, and that at an early age they gave unmistakable
signs of their parentage. McCrady’s observations showed us how great
were the changes of figure their young undergo before they assume
the aspect of the parent. It has been my good fortune to trace these
changes in several of our species of Ctenophorae somewhat in detail,
and I shall make use of the material thus afforded in discussing the
position of these animals, as well as their pretended bilaterality, and,
by comparing their mode of development with that of Polyps, Acalephs,
and Echinoderms, endeavor to ascertain whether their association with
them into one great branch of the Animal Kingdom is true to nature,
or whether the affinities between the mode of execution in the plan of
the members of the Coelenterata are really of such a character as to
justify their separation from the other Radiates as one great branch
of the Animal Kingdom.

Let us first examine the character of the Coelenterata and of the
Radiata as they are understood. What is common to Polyps, Acalephs,
and Echinoderms is a vertical axis, or rather an axis through which
we can pass a plane at right angles, and in this plane draw two axes
at right angles to each other. These axes, of course, are not equally
prominent in Polyps, Acalephs, and Echinoderms; taking, for instance,
the three axes as we find them in some of the Spatangoids, we have a
vertical axis, a coeliea axis, and a diaceliea axis, the mouth and anus
being placed in such a position with reference to the coeliea axis as to
give us a right and left, an anterior and a posterior extremity. In the
Acalephs, it is only among the Ctenophorae that we can distinguish
between the coeliea and diaceliea; but we have neither right nor left
— no anterior or posterior — side; while in Polyps we can distinguish
their axes with greater exactness than in the Hydroids and Discophorae.
We are so accustomed to impose our notions of symmetry on every-
thing we meet, that it is difficult to divest ourselves of the idea that
every animal has not necessarily a right and a left side, an anterior and
a posterior extremity; we start with the idea that such relations must
exist in all animals, however disguised, and under this impression we
try to reconcile plans which are totally distinct. If, however, we admit
the idea of different plans as the foundation of animal life, we must
give up all attempt to find some passage from one to the other. Ani-
mals the equation of which could be represented by that of a sphere,
or by that of two parallel planes, or of a series of cylinders, or of two
parallel cylinders, can never pass from one to the other; the equation
of a sphere cannot be transformed into that of a plane, nor into a
cylinder; the equations representing each of these figures include, it
is true, all the possible spheres or all the possible cylinders which may
be constructed by changing the values of the variables, but can never
be transformed one into the other. The infinite variety of forms, and
apparently aberrant types, constantly met with among animals, has
been the main cause of our difficulty in referring them to their proper
plan. It is not always an easy matter to reduce an equation to its
simplest form, and find out what it is; it may be concealed by coef-
ficients which will disappear only after repeated operations, and then
only enable us to determine of what degree the equation is. These
coefficients in an equation may be compared to the modifications of
those parts which appear to affect the mode of execution in animals;
and it may not always be an easy matter nor a possible one, in the
present state of our knowledge, to solve these organic equations. The
history of Science is full of examples of this kind; and we may have
to discover new methods in Natural History, as well as in Mathematicas,
before we can proceed with our eliminations, or arrive at a solution.
Thus the plan of radiation may be so carried out, by a modification
of some of the parts, as to appear at first sight to be bilateral; but
analyze these modifications carefully, and beneath them all can be
traced the plan of radiation, hidden only by external features of bilater-
ality. Such is eminently the case in the larvae of Echinoderms, and to
a less degree in the imitations of Echinoderm larve, the Ctenophore.
Bilaterality seems at first sight to be the plan upon which these animals
are built; but an elimination of the deceptive coefficients will show the
plan of radiation underlying this apparent bilaterality.

The figures here given of very young Ctenophore show no indica-
tion of this bilaterality, at least no more than can be traced in any
four-rayed jelly-fish. The tubes are as yet all of equal size, no promi-
nence is given to one side over the other, and the only hint of bilater-
ality is the early distinction of the longitudinal and of the transverse
axis by the position of the tentacles. No lateral appendages develop-
ing into immense lobes, as in the adults, can as yet be detected. The
characteristic feature of the eggs of the Ctenophore is the great diam-
eter of the envelope compared to the yolk, which is hardly more than
one third the diameter of the egg. The whole yolk is transformed by
segmentation into the embryo; this at an early period assumes a very
slightly pear-shaped form, and is moved by means of a few pairs of
large locomotive combs, equalling in length the diameter of the em-
bryos. This is the first indication we have that the embryo is a Cteno-
phore; and the early stages are marked by the constant and violent
flapping of the combs, arranged in four bunches near the abactinal
pole, immediately at the base of the large eye, also disproportionately
large in the young, containing but few granules, and seeming almost
like a glass ball fastened to the top of this active embryo. During this
stage the young Ctenophore is moving about somewhat slowly within
the envelope of the egg. With increasing age the locomotive flappers
descend somewhat along the spheromeres, and we find at the opposite
extremity from the eye the first trace of a small cavity (the digestive cavity of the adult), which increases in size till it becomes spherical. At about this time there is found, between the four clusters of the locomotive flappers, a second cavity, which has at first no connection whatever with the digestive cavity, and develops independently of it. This second formed cavity, now a large rectangular bag, slightly lobed between each of the four clusters of locomotive flappers, is the chymiferous cavity, from which the funnel and the chymiferous tubes take their origin in somewhat older stages. With advancing age the walls of the two cavities become more circumscribed, and at the same time more clearly defined, approaching each other constantly, until finally they open into each other. The digestive cavity and the chymiferous tubes diminish in diameter, becoming more circumscribed, and losing little by little the character of broad pouches for that of narrow tubes, extending through the gelatinous mass. The locomotive flappers extend with the chymiferous tubes along each one of the four pouches, which have given rise to two chymiferous tubes, one long and one short one, developing independently. This difference is barely perceptible in the adult Pleurobrachia; it is well marked in Mertensia, still better in Idyia, quite prominent in Lesueuria, and takes its greatest development in Bolina, where adjoining tubes anastomose after almost endless windings through the large lobes formed by the lateral projections of the gelatinous mass. The cause of the predominence of some of the spheromeres over the others, is the unequal development of these two sets of tubes, which may or may not extend into lobes, thus giving to the Ctenophore the appearance of bilateral animals. But examine this same development in another class of Radiates, among the Echinoderms, in the Spatangoids, for instance, where the odd ambulacrum is the one which takes the least development, when the other four are more equally developed, and no one will for that reason forget their radiate character, and call them strictly bilateral animals.

We can thus distinguish, among Spatangoids, an anterior and a posterior extremity, a right and a left side. In Ctenophora, owing to the peculiar manner in which the difference between the chymiferous tubes is developed, we are enabled to distinguish simply two diameters, but not an anterior and a posterior extremity, or a right and a left side; it seems, therefore, scarcely logical to call these animals bilateral, when in reality they show less sign of bilaterality than the Spatangoids, which no one, except Huxley, seems to doubt belong to Radiates. The axes we can thus distinguish among the Ctenophora by the unequal development of the chymiferous tubes, would not enable us to decide whether the long tubes of the different genera were the same tubes developed more fully in the different species. For instance, we should at first

* See analysis of this view in Agassiz's Contributions, Vol. V. p. 60, by A. Agassiz.
sight suppose the long tubes of Pleurobrachia, of Mertensia, of Idyia, of Bolina, of Lesueuria, to be homologous, but such is not really the case; and the only means we have of determining this is the plane passing through the tentacles, enabling us to ascertain whether the longitudinal axis is in the trend, or at right angles to that plane. We shall soon see that in Pleurobrachia and Mertensia the plane, including the tentacles, passes through the long axis, while in Bolina and Lesueuria it passes through the short axis; that the long tubes are on each side of the tentacles, and consequently that the long tubes of Mertensia and the long tubes of Bolina are not homologous; but what corresponds strictly to the long tubes of Pleurobrachia and Mertensia are the short tubes placed on each side of the tentacular system. The lateral tubes invariably in the plane of the tentacular system give us the means of determining to which of these two classes Idyia belongs, and we find that its longitudinal axis corresponds with that of Bolina, the lateral tubes being in the shorter axis, as in the last-named genus, while in Pleurobrachia, as in Mertensia, they are in the longer axis. Such is the origin of the characters which give to some members of the Ctenophorae their remarkable bilateral appearance. It is simply a modification of what is perfectly familiar to us among Echinoderms, and especially among the Spatangoids; but owing to the bilateral character of their development, the Ctenophore make us lose sight entirely of the original radiate plan upon which these animals are built. Viewing, however, this differentiation of the axis in all its stages, as we find it in Pleurobrachia, in Idyia, in Mertensia, in Lesueuria, in Bolina, we constantly keep before our eyes the original formula from which the other members are derived.

Examined in the light of prophetic beings, the bilaterality of the Acalephs is but another of those wonderful links which unite in one great whole the different members of the Animal Kingdom. As the Polypys are the prophetic representatives of the Acalephs in their embryonic condition, the Hydroid state, so must we look at the Ctenophore as the prophetic type of those still more wonderful beings, the Echinoderm larvae, in which bilateral symmetry is carried to such an extent that even the great mind of a Müller is led to consider them as exhibiting a direct passage from a bilateral to a radiate plan of structure. In the bilateral symmetry of the Ctenophore we are constantly reminded of the general appearance of Echinoderm larvae, in which the radiate structure should still be so far apparent as not to be concealed by the bilateral symmetry.

Looking at the Ctenophorae as prophetic animals, we are able to understand the separation of the digestive cavity into two distinct parts. It is only what we find more fully developed in the Echinoderm larvae; the separation of a sort of alimentary canal, in Ctenophorae,
from the rest of the digestive apparatus, exactly corresponding to what
exists in Echinoderm larvae. The connection between the water system
and the digestive system is likewise precisely similar to that of Echin-
oderms in their larval state; for although in the adult Star-fish, or Sea-
urchin, or Ophiuran, there is no apparent connection between the am-
bulacral and the digestive system, yet in the young larvae we can see
that this connection exists, the water system being formed by diver-
ticula from the digestive cavity; while the injections of Professor Agas-
siz have proved the existence, in the adult, of a similar connection in
Echinarachnius, in Mellita, and in Clypeaster.

It was only after the embryos of Echinoderms had been compared
with Ctenophore that undoubted evidence of their identity of plan was
obtained. The embryological development of Ctenophore leaves no
doubt as to the Acalephian character of the order. It remains only for
us to see whether the Ctenophore form a group of equal value with the
rest of the Acalephs, or stand simply as an equivalent of the other two
orders, the Discophore and the Hydroids. The careful examination
lately made of many genera of which we had no definite knowledge
before, as well as their embryology, has now left it difficult to decide
whether the Discophore and Hydroids are independent orders, or whether the distinction established between the Discophore and Hydroids is
merely a subordinal division in a great order, including these two. If
so, this order might be called the Medusidae, in opposition to the Cteno-
phore, which are an order perfectly and accurately circumscribed; the
presence of locomotive flappers being as characteristic for the Cteno-
phore, and as constant a feature of Ctenophore among Acalephæ, as
feathers are for the class of Birds among Vertebrates. These flappers
exist almost from the earliest embryonic stages, and thus far not a single exception is known to the rule. Fritz Müller and Agassiz have
shown that it is hardly natural to associate the Charibdeidae and Αεγι-
nidæ with the Hydroids, and the latter has proposed to unite them with
Discophore, while the former would make a separate order of them.
This seems hardly justifiable, as there are as many reasons— their mar-
ginal appendages, genital organs, &c.— for uniting them with Discophore, as for leaving them with the Hydroids,— the shape of the bell,
the great development of the veil. If, in addition, we take into account
what we have observed in the Trachynemidae, it will be seen that we
can no longer draw the line between the Discophore and Hydroids as
distinctly as before; while the creation of a third group equivalent
to these two, to contain the families in dispute, does not bring us any
nearer to the solution of the problem. A more accurate knowledge of
the tropical forms will go far to settle this point; and in the mean
time, with this explanation, I will place temporarily (until further
information can be gained) the Αεγιnidæ and the Trachynemidae among
the Discophorae, with the full expectation that future researches will give us better reasons than we have at present for abandoning, as contrary to nature, two orders which have thus far been almost universally acknowledged by all investigators of Meduse. If the Discophorae are to be united with the Hydroids, we shall have to divide the Acalephs into two orders, Ctenophorae and Medusae; the different suborders of the latter division including all the suborders of the Discophorae of Eschscholtz, and those of the Hydroids as limited by Professor Agassiz.

The remarkable changes of form the Ctenophorae undergo until they attain their adult state, will necessitate at no very distant time a complete revision of the Ctenophorae, as soon as the embryology of a sufficient number of families has become well known. What is now especially wanting is an embryology of Cestum, which would give us, with what has been shown here of the embryology of the three other suborders of Ctenophorae, a standard for an embryological classification of the Ctenophorae. We can already see that many of the genera of Eschscholtz (Medea and Pandora), as has already been suggested by Professor Agassiz and by McCrady, are only embryonic stages; all such species as the Cydippe quadricostata of Sars (Bolina norvegica), the Cydippe brevicostata of Will (Chiaja multicornis M. Edw.), and the Sicysosoma rutulum of Gegenbaur, are undoubtedly undeveloped stages of some of the well-known Ctenophorae of the Northern Ocean, the Adriatic, and the Mediterranean. From what has been shown of the transformations of Bolina alata, I should even be inclined to consider the Cydippe hormiphora of Gegenbaur as one of the stages of growth of Euramphoea vexilligera Gegenb. It seems to me that there is between these two species the same relation which exists between some of the stages here figured of Bolina alata. The material at my command is too imperfect to attempt anything more definite than the few hints here thrown out for more fortunate observers.

Professor Agassiz, in his third volume of the Contributions, intended to give an embryology of some of our species of Ctenophorae. He made many observations previous to 1856, which, however, were never noted down; only a couple of sketches of a young Pleurobrachia were drawn by Mr. Sonrel; and during the subsequent summers other and more pressing work compelled him to forego his intentions. The observations here presented, in the descriptions of our common species, were made independently during the summers of 1860–63.
In the Lobatæ we find that the diameter passing through the tentacular apparatus is invariably the smaller, while the compression of the spherosome is in the plane at right angles to it. This is reversed in the Saccatae. The spheromeres at the extremity of the longer transverse axis, the cœlial axis, develop into lobes.

Family BOLINIDÆ Agassiz.

The family of Bolinidæ has here a somewhat different circumscription from that ascribed to it by Professor Agassiz in his "Contributions." The genus Lesueuria, of which no species was known on our coast in 1860, has been removed from the Mnemiidæ to the Bolinidæ. It is evident from the description hereafter given of Lesueuria, that this genus is only a Bolina with diminutive lateral lobes. The genus Mnemiopsis also is shown to belong to the Bolinidæ, and not the Mnemidæ.

BOLINA MERT.

Mnemia Sars (non Esch.). Beskriv., p. 32. 1833.

Bolina septentrionalis MERT.

Off Matthai Island, Behring's Straits (Mertens).
Bolina alata Agass.

It is quite remarkable that there should be no mention made by Fabricius of a single Ctenophore which may be identified with any species of the genus Bolina. There is hardly a more common Medusa than the Bolina alata of our coast; and the occurrence of so many of our species of Ctenophora on the coast of Greenland makes the absence of Bolina the more striking, and quite interesting in a geographical point of view, as we should thus have among Acalephs a case of geographical distribution analogous to that of Echinarchnium, which does not extend farther north than Labrador.

To the description of the adult given by Professor Agassiz I have nothing of importance to add, with the exception that the chymiferous tubes which run along the edge of the lateral lobes, when seen from the narrow side, should unite, and thus complete the circuit (Fig. 16), instead of stopping short at a little distance apart, as they have been represented by him. This connection takes place at an early period of the development. (See Fig. 8.)

The compression of the spherosome of Bolina and of Pleurobrachia is in different planes, otherwise it would be exceedingly difficult to distinguish a very young Pleurobrachia from a young Bolina. In the young Bolina, as has been shown already by McCrady, we find long tentacles; so that the younger stages of this Medusa are so unlike the adult, that it would be the most natural error to commit, to consider it the young of Pleurobrachia. The accompanying figures (1-3) are taken immediately after the escape of the young from the egg. It will be noticed, when compared to Pleurobrachia, that besides the position of the tentacular organ, the outline of the spherosome is somewhat different, and that the ambulacra are quite narrow. The digestive cavity also fills a comparatively small space. (Fig. 2.) The extreme tenuity of the tubes soon becomes a character by which the young Bolina is at once distinguished from the young Pleurobrachia, as well as its ellipsoid shape, which greatly increases

In all the young Ctenophore the following lettering has been adopted: d, digestive cavity; a, anal rosette; t, tentacle; c, long ambulacral tube (longitudinal ambulacra); c, short ambulacral tube (lateral ambulacra); e, eye speck; f, funnel; a, ambulacral cavity; l, lateral tubes. c is the longest tube at first, and e the shorter: a, lobes of spherosome; the names are taken from the adult.

Fig. 1. Young Bolina, seen from the narrow side.
with age. (Fig. 4, which is Fig. 6 seen from abactinal side.) We soon perceive in the young of this species changes of shape similar to those to be described in Idyia and Pleurobrachia: the outline becomes more elongated; the lateral tubes, at first simple diverticula from the main ambulacral tubes (/, Fig. 5), extend to the level of the opening of the mouth (Fig. 6). We can also trace a difference in the rapidity of growth of the ambulacral tubes, but, contrary to what we find in other genera, we observe the tentacular ambulacra are the most rapid in their growth. When they reach the bottom of the spherosome, they bend towards each other (Fig. 7), and finally join (Fig. 8), but have at present no connection with the lateral tubes near the mouth. It will be noticed by the figure (n, Fig. 8) that that part of the spherosome which contains the junction of the two lateral ambulacra (Figs. 9, n, 10), has a tendency to expand beyond the level of the mouth; this is the first appearance of the lobes of the adult Bolina. This part of the spherosome increases rapidly in dimensions, and we have a minute Ctenophore with well-marked lobes, like a Bolina, and highly developed tentacles, like a Pleurobrachia (Fig. 11). Still greater changes are yet to take place; we soon perceive that

Fig. 2. Bolina in state of Fig. 1, seen from the broad side.
Fig. 3. Somewhat younger than Fig. 1, seen from the abactinal pole.
Fig. 4. Young Bolina, seen from the abactinal side, somewhat older than previous figures.
Fig. 5. Formation of lateral tubes in young Bolina.
Fig. 6. Bolina in which lobes begin to appear, seen from narrow side, same state as Fig. 4.
Fig. 7. Somewhat more advanced than Fig. 6, the tube c' not yet having formed the circuit; seen from the actinal side.
the long ambulacra do not remain regularly arched, but bend towards the vertical axis (Figs. 12, 13); this bend is soon changed into a loop, which passes through a corresponding protuberance of the spherosome. This becomes the auricle, from the angle of which (Fig. 14) we also perceive a branch of the chymiferous tube, which soon pushes its way through the gelatinous mass, and forms a junction with the lateral tubes, exactly as we shall find it to be the case with Idyia. In the mean time the other ambulacra have been increasing in length, and we find that they reach almost to the lower end of the lobe; when there, they make a sharp angle, turn upward, and form thus the beginning (Figs. 12, 13) of the complicated system of windings which we find in the lobes of the adult Bolina. During the later stages of growth the tentacular apparatus has been shifting its position, the opening coming nearer and nearer to the level of the mouth; the tentacular bulb lengthening in proportion, and finally appearing like a long, narrow rod, with a slight swelling at the extremity, from which the remnants of the threads of the tentacles are suspended. The only changes necessary to make this young an adult Bolina, are changes of quantity. The apparent difference in the mode of growth of the

Fig. 8. The tentacular ambulacra have united, and the lobes (a) project well beyond the opening of the mouth.
Fig. 9. About in the condition of Fig. 2, seen from the broad side.
Fig. 10. Somewhat younger than Fig. 8, seen from the broad side.
Fig. 11. Fig. 8, seen from the broad side.
Fig. 12. Bolina with first appearance of the auricles, seen from the broad side.
Fig. 13. Bolina of stage of Fig. 12, seen from the narrow side.
lateral and longitudinal tubes is entirely done away with in subsequent changes, as we find that the short ambulacra are the lateral ambulacra, though at first they are more rapid in their growth, but are afterwards outrun by the rapid increase in length of the longitudinal tubes; but it must be remembered that, in this genus, the flattening of the spherosome takes place in different planes from Idyia and Pleurobrachia. The young Bolina has now attained a condition in which it will be very easy to recognize the different parts of the adult, if compared in homologous positions. Fig. 15 is an adult seen from the broad side, corresponding to Fig. 12; Fig. 16 is an adult seen from the narrow side, corresponding to Fig. 13; Fig. 17 is an adult Bolina, seen from the actinal side, corresponding to Fig. 14; and in Fig. 18 we have the adult seen from the abactinal pole.

Coast of New England, and northward to the Bay of Fundy (Agassiz). Museum diagrams Nos. 1, 2, after L. Agassiz.

Fig. 14. Fig. 13 seen from the actinal pole, and more magnified. r, circular tube; m, auricles.

Fig. 15. Adult Bolina seen from the broad side. a, f, longitudinal ambulacra; g, h, lateral ambulacra; o, eye-speck; i—m, digestive cavity; i—a, funnel; r, lateral tube leading to tentacular apparatus just on level of mouth, m; r, r, auricles; t, t, prolongation of the longitudinal ambulacra; n, n, same tubes turning upwards, bending down at z, z; z, z, point of junction of tubes from opposite sides; e, prolongation of tubes from the lateral ambulacra. About half natural size.

Fig. 16. Fig. 15 seen from the narrow side. a, b, longitudinal ambulacra; c, h, lateral ambulacra; other letters, as in Fig. 15.

Fig. 17. Bolina seen from the actinal pole; lettering as above.

Fig. 18. Bolina seen from the abactinal pole. a, b, c, f, longitudinal ambulacra; e, d, g, h, lateral ambulacra; s, s, circumscribed area; other letters, as above.
The *Bolina littoralis* McCr. is probably either this species, or one of our species of *Mnemiopsis*; but not having the means to determine this point, a figure (Fig. 19) of the *Bolina vitrea* Agass. is added here, to serve as a basis for its identification hereafter.

Reef of Florida (Agassiz); Charleston (McCrady).

Bolina microptera A. Agass.

The discovery of several species of *Bolinidae* on the eastern coast of North America, belonging to different genera, which had all been confounded together, has induced me to examine anew the descriptions and drawings of the species of *Bolina* observed on the northwest coast. I have become satisfied that the species of *Bolina* here noticed is not the *B. septentrionalis* of Mertens, but differs specifically from it. It is quite elongated; the lateral lobes are very short, with complicated windings of the long ambulacral tubes. This species resembles in outline more the *Bolina vitrea* Agass. than any other. It has, like it, a long digestive cavity, but differs from it in the proportions of the lateral lobes, and the complexity of the windings of the long ambulacra. It is, like the *B. vitrea*, perfectly transparent and nearly colorless, of a slight bluish tinge; the polar diameter measures about two inches. Found in June, in the Straits of Rosario, Washington Territory.

Gulf of Georgia, W. T. (A. Agassiz).

MNEMIOPSIS Agass.

The genus *Mnemiopsis* is remarkable among the *Bolinidae* for the peculiar structure of the tentacular apparatus, which sends a branch along a deep furrow, protected by a lappet, to the base of the auricles.

Fig. 19. *Bolina vitrea* seen from the broad side. l^1, l^2, long ambulacra; l, l', short ambulacra; f, funnel; d, digestive cavity; t, tentacular tube; χ, χ', auricles; l, l', anterior and posterior lobes; h', tentacle.
The accompanying figures (Figs. 20, 21) of *Mnemiopsis Gardeni* Agass. are here introduced to show how striking are the differences in the proportions of the two Meduse of this genus found upon our coast. The great length of the digestive cavity, together with the size of the auricles and lobes, enable us at once to distinguish this species from its ally, the *Mnemiopsis Leidyi* A. Agass. The genus *Mnemiopsis* had been placed by Professor Agassiz among the *Mnemiidae*, on account of the deep furrow separating the anterior and posterior lobes from the lateral spheromeres. The differences of form based upon this structural feature, which are in such striking contrast in *Bolina* and *Mnemiopsis Gardeni*, are far from being marked when we compare *Bolina alata* and *Mnemiopsis Leidyi*.

Charleston, S. C. (L. Agassiz).

Mnemiopsis Leidyi A. Agass.

This Medusa would readily be mistaken for a true *Bolina*, at first glance; a closer examination, however, will show that, notwithstanding the short digestive cavity which reminds us of *Bolina*, we have the deep furrow separating the anterior and posterior lobes from the lateral spheromeres. The long ambulacra are covered with locomotive flappers to the actinal margin, and we have long auricles, showing that this is a *Mnemiopsis*, with longer anterior and posterior lobes than we have in the *Mnemiopsis Gardeni* Agass.

This species grows very large, specimens measuring six and even eight inches in length are frequently found. Like the other Ctenophore of our coast, it is gregarious; thousands being collected together basking in the sun. It is exceedingly phosphorescent; and when passing through shoals of these Meduse, varying in size from a pin's head to several inches in length, the whole water becomes so brilliantly luminous that an oar dipped in the water up to the
handle can plainly be seen, on dark nights, by the light produced by this illumination. The seat of the phosphorescence is confined to the rows of locomotive flappers, and so exceedingly sensitive are they that the slightest shock to the jar in which these Medusae are kept is sufficient to make them plainly visible by the light emitted from the eight phosphorescent ambulacra. This species is long, almost ellipsoidal, when at rest. (Fig. 22.) The auricles extend about one third their length beyond the oral aperture (o, Fig. 22), taking their origin on a level with the eye-speck (a, Fig. 22). The prolongation of the chymiferous tubes, and their manner of anastomosing, is exceedingly simple; we find nothing of the complicated bends and turns (Fig. 23) of the same tubes which we have in Bolina alata (Fig. 16). Bolina alata ranks among the most perishable of all our Medusae; but this species seems to be very hardy, as I kept one large specimen alive for three weeks, during the whole of my stay at Naushon. This specimen also laid eggs, which were developed into small Mnemiopsidae, after passing through stages in which it was almost impossible to say whether the Medusa was a young Pleurobrachia or not. As is the case in Bolina, the long tentacles, the globular outline of the young, resembled so closely the young of Pleurobrachia, which were developing at the same time in another bottle, that frequently I would be unable, after leaving them for some time, to decide at once to which

Fig. 22. Mnemiopsis Leidy seen from the broad side. a, starting-point of branch of tentacular apparatus extending along the furrow. f, to d, the base of the auricles.

Fig. 23. The same as Fig. 22, seen from the narrow side.
species the young belonged, as the difference between the diameters is far less marked than in Bolina. As they advance in size, the lobes become developed, the tentacles disappear, and they can be readily distinguished. The development goes on in the envelope for a week or ten days after the eggs are laid, the young Medusa not breaking through the outer membrane before it is well advanced, and capable of guiding its motions through the water. The difference between the two transverse diameters of the spherosome is not as great as in Bolina, as will readily be seen by comparing the broad and narrow views of this Ctenophore (Figs. 22, 23). What is very peculiar in the genus Mnemiopsis is the peculiar development of the tentacular apparatus. It is not, as in Bolina, reduced to a simple bulb, with a few tentacles clustered at the base; but is more like what we find in Lesueuria, where the threads of the tentacular bulb are quite long, and have a decided tendency to spread fan-shaped on both sides of the bulb. We have a rather small tentacular bulb placed at the end of a long, slender tube, a short distance above the opening of the actinostome (o, Fig. 22). This tentacular bulb is protected by a kind of two-lapped hood (Fig. 24), the folds of which extend on each side along a groove towards the abactinal pole, to the very origin of the auricles, at a, Fig. 22, taking their origin at o, Fig. 22; their origin from the bulb is better seen in Fig. 24, where a portion of the two branches of the tentacular apparatus, extending along this groove, is represented. It is exactly as if we had the tentacles of a Pleurobrachia, instead of swimming and floating freely about, protected by a kind of cover, and thus pressed towards the spherosome, and prevented from moving freely about. The whole spherosome is covered with minute spots, clusters of lasso cells scattered irregularly over the surface. (See Fig. 23.)

From what we know of the amount of water which enters into the composition of Acalephs, and when we remember that not more than one half of one per cent. is animal matter, it seems strange that anything like a parasite should be found upon these Acalephs, and stranger still that this parasite should be able to find enough to live upon in such a delicate animal. As early as 1835 Sars had observed a species of intestinal worm (Scolex acalephorum) upon a large species of Mnemia (M. norvegica Sars), ten and even twelve specimens being found at-

Fig. 24. A part of the tentacular apparatus, near the opening of the actinostome, to show the mode in which the branches of the tentacle extend, under cover of a lappet, towards the abactinal extremity.
LESUEURIA.

23

tached to the inner wall, near the upper part of the furrow, separating the lobes from the spherosome. Foster, in 1841, found a species of Filaria, which he called *Tetrastoma Playfairii*, upon a species of Cy-dippe; Greene and others have also seen parasites upon Hydroid Medusa; and finally, in this species, five to eight worms, which resemble more a leech than anything else, though I cannot refer them to any of the genera which are described, attaining a length of an inch, and even an inch and a half, are frequently found attached to the inner wall, in the upper part of the long furrow, near the eye-speck. Hardly a specimen of this Medusa is found which has not one or two of these parasites. It is a long, flesh-colored, cylindrical worm, with five longitudinal white lines extending the whole length; the mouth, by which it is fastened to the jelly-fish, occupying the whole of the anterior part. This mouth can be closed, extended to a point, and, when inserted in the substance of the jelly-fish, it is expanded again like the mouth of a trumpet, and the worm is firmly fastened. These worms are sluggish in their movements, and when detached and disturbed hardly show signs of life by the slow contractions of their body. The worms live several days after they have been separated from the Medusa.

Naushon, Buzzard's Bay (A. Agassiz).

LESUEURIA **MILNE EDW.**

Lesueuria **hyboptera** A. Agass.

In Lesueuria the tentacular ambulaca are by far the most developed; the locomotive flappers of the short ambulaca extend but to the beginning of the auricle; the immense size of this apparatus, projecting beyond the level of the mouth, and the winding of the tube running through the auricle, before it joins the lateral chymiferous tube, gives this tube a great length when compared to the longitudinal ambulaca, which run in an almost straight course from the abactinal pole till they meet the horizontal part of the tentacular branch which connects near the mouth with the opposite tentacular apparatus. The tentacular apparatus is similar to that of Bolina, and is also situated in the short transverse axis. The lobes of a Lesueuria can hardly be called by that name, as what corresponds to the lobes of Bolina are small projections scarcely reaching below the level of the mouth, and in which all we
find corresponding to the complicated windings of the longitudinal ambulaera are a few short, straight projections of the ambulaeral tubes, running like spurs into the thickness of the spherosome.

The outline of our Lesueuria (Fig. 25) is entirely different from that of the Mediterranean; the latter is quite ellipsoidal, while the North American species shows a strong tendency to bulging out near the actinostome, and to imitate in its outline that of Bolina, mutilated specimens of which, when seen swimming in the water, can easily be mistaken for this species. It is only on noticing the position of the mouth, the great length of the auricles, that the mistake becomes apparent. Lesueuria is as transparent as Bolina, and even more sluggish; it grows to a large size, four inches in polar diameter, and is exceedingly abundant during September, large numbers being visible on almost any clear, hot day. Its phosphorescence is a very peculiar bluish light, of an exceedingly pale steel color, but very intense.

What is peculiar to our species is the almost rectangular outline which it has when seen from the broad side (Fig. 25). The shortness of the funnel; the extreme tenuity of the chymiferous tubes; the deep depression, or rather cut, in which the eye-speck is situated, for the abactinal part of the gelatinous spheromeres joins so closely above this that the eye-speck literally seems imbedded in the solidity of the

Fig. 25. Lesueuria seen from the broad side, natural size.
Fig. 26. Fig. 25 seen from the narrow side.
spherosome. The lateral tubes are also very attenuated, and bulge well out from the digestive cavity, as is seen in a profile view from the narrow side (Fig. 26). The view from the narrow side shows this species to be compressed to a far greater extent than anything we know in Bolina; approaching almost to Mertensia. When in motion the auricles are often held out extended from the body (Fig. 26), one pair bending one way, and the other in the opposite direction, as is shown in Fig. 27; the outline of the body when seen from the abactinal pole is nearly elliptical (Fig. 27), and we have not the strongly-ribbed appearance so characteristic of the other Ctenophoreae. The connection between the lateral and longitudinal ambulacra, forming a circular tube round the actinostome, can be traced in Fig. 28, and it differs in no essential way in its mode of formation from what we observe in Bolina.

Massachusetts Bay, and Newport, R. I. (A. Agassiz).
Museum diagram No. 2 after A. Agassiz.

Family OCYROEÆ Less.

Ocyroe Rang.

Ocyroe maculata Rang.

Ocyroe maculata Rang. Mém. Soc. d'Hist. Nat. de Paris, IV. 1829, Pl. 20, Fig. 1.

Antilles (Rang).

Fig. 27. Lesueuria seen from the abactinal pole.
Fig. 28. Seen from the actinal pole, to show the connection of the lateral and longitudinal ambulacra.
SUBORDER SACCATÆ AGASSIZ.

Callianirida Esch. Syst. der Acal., p. 21. 1829.

Family MERTENSIDÆ Agass.

MERTENSIA LESS.

Mertensia Less. (non Gegenb.). Zooph. Acal., p. 100. 1843.

Mertensia ovum Mörch.

Beroc plicus For. (nee For. nee Mull.). Art. Reg., H. Pl. XVI. Fig. 4. 1820.

The compression of Mertensia coincides with that of Pleurobrachia. The axis passing through the tentacular apparatus is more than twice as long as the coeliac diameter. What is very characteristic of this genus is the great distance at which the lateral chymiferous tubes are placed from the digestive cavity, and the close connection which is shown there to exist between the tentacular apparatus and the lateral tubes, the base of the tentacular apparatus seeming to give rise to this long, slender tube, enclosing the digestive cavity in its two wide arches, when seen from the broad side. (Fig. 29.) The spherosome rises so much above the opening for the passage of the tentacular apparatus, that it seems, in adult specimens, as if the tentacular ambulacra were the longest.

Only one large adult specimen of this jelly-fish has been taken in our Bay. It was at first mistaken for a large Pleurobrachia; but the great flattening of the spherosome, and the peculiar spiral motion which they keep up while active, soon enables one to distinguish them readily from that genus, while swimming in the water. The color, also, is of a light-pink hue; the spermaresies are of a very brilliant crimson, the ovaries being more dull. It has the rosette of an Idyma, with the
edges smooth; the circumscribed area is quite small; the tentacles are but moderately long, apparently not capable of as great expansion as Pleurobrachia. Our species of Mertensia is exceedingly delicate; the specimens taken at Nahant and Eastport, though treated with the greatest care, not living more than a couple of hours when brought into confinement. I suppose this to be the Beroe ovum of Fabricius.

The difference between the tentacular chymiferous tubes and the median pairs is very marked in young specimens. In the youngest Mertensia observed, we find the same pear-shaped form noticed in young Pleurobrachia. (See Fig. 41.) The ambulacra, however, are far more advanced in comparison to the tentacles, and occupy nearly the whole of the spherosome (Fig. 30); the pouches of the ambulacra concealing almost entirely the digestive cavity. There are also very prominent orange pigment-cells, which are not found in the young of Pleurobrachia, along the rows of locomotive flappers; the tentacles remain simple much longer than in Pleurobrachia. The young Mertensia is not as much compressed as the young Pleurobrachia (compare Figs. 31 and 46, representing almost corresponding stages of Mertensia and of Pleurobrachia).

The compression goes on increasing with age, and in the adult it has become one of the striking characteristics of the genus. With advancing age the actinal part of the young Medusa becomes more prominent, while the ambulacra have remained nearly unchanged, the long and short ambulacra not retaining quite the same proportions they had before they were almost equally developed; the funnel has become

Fig. 29. Adult Mertensia seen from the broad side.
Fig. 30. Young Mertensia seen from the broad side, with a simple tentacle.
Fig. 31. The same as Fig. 30, seen from the abactinal pole.
formed, the digestive cavity \(d\) and the lateral tubes \(l\) are well defined. (Fig. 32.) In a view from below of this same individual (Fig. 33) we notice the narrowing of the large ambulacral pouch into somewhat more circumscribed tubes. In the next stage which is here represented (Fig. 34), the ambulacra have assumed still more the aspect of tubes, the funnel has elongated, the tentacles have begun to send out lateral processes, the lateral tubes extend nearly to the level of the mouth, the actinal part of the young Medusa having taken a still greater development, and having become as long as the ambulacral part. The tubes, both ambulacral and lateral, when seen from below (Fig. 35), are also more narrowed and better circumscribed. In the next stage the development of the actinal part of the spherosome (Figs. 36, 37) has become so striking, that we cannot fail to recognize in the young Acaleph a Mertensia. The difference between the coelac and diacoeliac axis is quite prominent, giving to the animal, when viewed from the broad (Fig. 36) or narrow side (Fig. 37), a totally different aspect. The tentacular apparatus differs from that of Pleurobranchia in being limited to the abactinal part of the spherosome, and not extending towards the actinostome, as in Pleurobranchia. In the young stages the lateral tubes are still quite close to the digestive cavity, and do not yet flare out, as in the adult. (See Figs. 29, 36.) The ambulacra are very nearly equally developed, the tentacular pairs and the median tubes differing but slightly in length. The tentacles are lashed and covered with large orange pigment-spots, similar to those of the rows of locomotive

Fig. 32. Somewhat more advanced Mertensia, seen from the narrow side; the lateral tubes, \(l\), are present.
Fig. 33. The same as Fig. 32, seen from the actinal pole.
Fig. 34. Still more advanced Mertensia, seen from the narrow side.
Fig. 35. The same as Fig. 34, seen from the actinal pole; the tubes are circumscribed, and the tentacular apparatus isolated.
flappers. The pigment-spots become smaller and less conspicuous with advancing age.

Fig. 26. Fig. 37.

This species is exceedingly common in Eastport harbor, during the month of September.

Arctic Ocean (Mertens, Scoresby); Baffin’s Bay (Fabricius); Massachusetts Bay, and Eastport, Me. (A. Agassiz).

Museum diagram No. 3 after Alex. Agassiz.

Family CYDIPPIDÆ Gegenb. (*rest. Ag.*)

PLEUROBRACHIA Flem.

Cydippe Esch. Syst. der Acal., p. 29. 1829.

Fig. 36. Still further advanced Mertensia, seen from the broad side.

Fig. 37. Young Mertensia about in the same condition as that of the preceding figure, seen from the narrow side. The main branches of the ambulacral system have lost the character of pouches.
Pleurobrachia rhododactyla Agass.

Pleurobrachia rhododactyla Packard. List of Animals dredged near Caribou Island. 1863.

The young Pleurobrachia early assumes an outline resembling the adult; it is slightly pear-shaped, with two very small protuberances, like buttons, indicating the first appearance of the tentacles (Figs. 38–40, t), and has a very large transparent sphere (e) with two or three granules, as an eye-speck. The first cavity formed in this embryo is a small spherical space (Figs. 38–40, d) near the pole opposite the eye-speck. As this grows larger it becomes elliptical, reaching to the base of the tentacular (Fig. 41, t) knob, which now extends, like the handle of a jar, beyond the outline; this cavity is the digestive cavity, and there is up to this time no sign of ambulaclral tubes or cavi-

Fig. 38. Young Pleurobrachia seen from the broad side.
Fig. 39. Same as Fig. 38, seen from the narrow side.
Fig. 40. Same as Fig. 38, seen from below.
Fig. 41. Pleurobrachia somewhat more advanced, seen from the broad side.
Fig. 42. Same as Fig. 43, seen from above.
Fig. 43. Same as Fig. 42, seen from the broad side, older than Fig. 41.
ties of any kind. The position of the ambulacleral system is early well defined by four short double rows of combs, each row not having more than three or four combs (Figs. 38 - 41). The spherosome early shows the great difference in the size of the longitudinal and coeliac diameters, the tentacular diameter being nearly twice as long as the other (Figs. 40, 42). The locomotive rows extend rapidly to the level of the upper part of the digestive cavity. At this time the ambulacleral cavity makes its appearance as a small spherical cavity, in the same way as the digestive cavity. The ambulacleral cavity increases rapidly, soon attains the size of the digestive cavity, and occupies the whole of the abactinal extremity of the animal (Fig. 43, o). At this time the young Pleurobrachia is quite pear-shaped, with solid tentacles about as long as the polar diameter. The ocular sphere is large, very prominent (Fig. 43, e). There are two large elliptical cavities, of nearly equal size (Fig. 43, o, d). In the next stage the two cavities differ in their outline, the ambulacleral cavity becoming more and more rectangular, and the digestive cavity triangular, the two being separated by a wall which grows thinner and thinner. The combs of the ambulacleral rows increase in size, and the flappers are quite long, equalling in length half the transverse diameter of the spherosome. The ambulacleral cavity extends towards the abactinal region on both sides of the thickening of the wall, supporting the sensitive bulb. This is the first sign of the formation of the funnel (Fig. 44, f), and its division into the two branches, opening outwards. The compression of the digestive cavity is plainly seen at this stage, as when seen facing the tentacles the cavity comes close to the outer wall (Fig. 44), while when seen at right angles to the tentacular diameter it occupies but a much smaller space (Fig. 45). The tentacular bulb becomes more isolated, the tentacle is about three times as long as the polar diameter. During all this time, and from the first appearance of the locomotive flappers, the young Medusa moves about with the greatest rapidity, turning over in every possible direction, running round and round, with the digestive cavity forward, in the envelope of the egg, as if trying to make its escape from it; while at other times the young Medusa remains

Fig. 44. Pleurobrachia in which the digestive cavity and the ambulacleral cavity are already connected, immediately before the escape of the Medusa from the egg.

Fig. 45. Same as Fig. 44, somewhat less magnified, to show the relative size of egg envelope and embryo.
poised in the centre of the egg, rotating slowly on its axis, imitating, while still in the egg, all the movements which are so characteristic of the adult. The young Medusa, before it escapes from the egg, occupies a comparatively small space, having thus ample room for its manifold movements. In Fig. 44 the outline of a part of the egg is seen; Fig. 45 is the same as Fig. 44 from the opposite side, showing the whole egg. Before the young leaves the egg, we find that the ambulacral cavity and digestive cavity connect by means of a small opening in the centre of the dividing wall, and at the same time a depression at the actinal pole soon increases sufficiently to pierce through the wall, and make an opening, the mouth (Fig. 46). The young Pleurobrachia now makes its escape from the egg, and the changes it undergoes are very rapid; the funnel becomes well isolated, and the digestive cavity quite compressed, and we see the first sign of the separation of the double row of locomotive flappers into two very distinct rows. At the same time, when facing the tentacular bulb, we see a small triangular pouch extending along the digestive cavity, which, when seen in profile, plainly appears to be nothing but a cæcum of the ambulacral cavity, formed exactly as in Bolina (Fig. 5). These pouches are the rudimentary lateral chymiferous tubes so characteristic of Ctenophore. At this stage the ambulacral flappers are not as near the abactinal pole as in former stages, on account of the elongation of portions of the spherosome. The lateral tubes increase rapidly in length, and soon extend to the level of the mouth (Fig. 47, l), while the forking of the ambulacral tubes becomes more deep. We notice also at this time a marked difference in the size of the ambulacral tubes. The tentacular ambulae (those on each side of the tentacular apparatus) are much shorter than the longitudinal ambulae (Fig. 48, e). The tentacle, also, is no longer a simple solid thread; long, slender offshoots, similar to the tentacle, have developed near the

Fig. 46. Same as Fig. 44, seen from actinal side.

In all the preceding figures the embryo has been drawn without the egg envelope; but it must be remembered that the little Medusa does not escape from the egg till it reaches the condition of Fig. 44.

Fig. 47. Pleurobrachia swimming freely about, in which the lateral tubes, the funnel, have become highly developed; seen from the broad side.
point of attachment, and the peculiar abactinal system (Fig. 48) has also made its appearance. The young Pleurobrachia has now all the appearance of the adult, only it is more pear-shaped, and it is about one half of an inch in polar diameter. The ambulacra are yellowish, with large orange pigment-cells on the surface of the ambulacral tubes (Fig. 49).

The difference between the axes, the coelie and the dia-coelie, grows less and less with advancing age, till they assume the almost identical outlines of the adult, as seen in Fig. 50, which represents the coelie and dia-coelie views of an adult. In Figs. 47 and 48 we have also the first trace of the cirri which assume such graceful shape in the tentacles of the adult Medusa (Fig. 51); the cirri begin nearest the tentacular bulb, and there are at first but two or three at the base of each tentacle.

Greenland (Fabricius); New England (Agassiz).
Cat. No. 366, Nova Scotia, Anticosti Expedition, 1861.
Museum diagrams Nos. 4, 5, after L. Agassiz and Alex. Agassiz.

Fig. 48. Somewhat less advanced than Fig. 47, showing the lateral tubes from the narrow side, as a prolongation of the ambulacral cavity.
Fig. 49. Pleurobrachia about in condition of Fig. 47, seen from actinal pole.
Fig. 50. Adult Pleurobrachia, from the head and narrow side, natural size.
Fig. 51. Adult Pleurobrachia in a natural attitude, natural size.
Pleurobrachia Bachei A. Agass.

Pleurobrachia Bachei A. Agass. resembles *Pleurobrachia rhododactyla* *in its general appearance, having about the same size; the color of the spherosome and of the tentacles being nearly the same. The opening of the tentacular sac, however, is at a greater distance from the pole, and the tentacles come out more from the side of the spherosome than in* *Pleurobrachia rhododactyla.* *The coelie cavity is also shorter, the funnel is longer, and the actinal portion of the sac shorter. The branches leading from the digestive cavity to the chymiferous tubes are much longer and more slender, the junction being above the opening of the tentacular sac, while in* *Pleurobrachia rhododactyla it is below, nearer the actinal pole. The greatest swelling of the spherosome is nearer the actinal pole, not in the middle of the actinal axis.*

Found in the Gulf of Georgia, and entrance of Admiralty Inlet, W. T., during the whole Summer of 1859, from May to September.

Washington Territory (A. Agassiz).

Cat. No. 288, Gulf of Georgia, W. T., 1859, A. Agassiz.

JANIRA OKEN.

Janira cucumis Less.

Between Sitka and Unalaschka (Mertens).

DRYODORA AGASS.

Dryodora glandiformis Agass.

Euchelchidia glandiformis Less. Zooph. Acad., p. 102. 1843.

Behring's Strait (Mertens).
SUBORDER EURYSTOMÆ LEUCK.

Family BEROIDÆ Esch.

BEROE Brown.

Beroe punctata Cham. & Eysen.

Beroe punctata Cham. & Eys. Nov. Act., X, p. 361, Pl. 31, Fig. 1.

Beroe punctata Blainv. Man. d’Actin., Pl. 7, Fig. 2. 1830.

McCrady has identified a species of Beroe found at Charleston with the *B. punctata* Esch. I am inclined to think that it may prove to be one of the species of Idyopsis found on the coast of Florida. Charleston, S. C. (McCrady).

IDYIA Frem.

Idyia ovata Less.

Is this not one of our species of Idyopsis? Jamaica (Patrick Brown).
Idyia cucumis Less.

Beroe cucumis FAB. Fauna Grönl., 1780, No. 353.
Beroe cucumis EsCH. Syst. d. Acal., p. 36. 1829.

The many species of Idyia which are described from the arctic parts of the Atlantic Ocean, and which have been identified with Idyia cucumis and Idyia borealis Less. by Professor Agassiz, are probably all identical with the Beroe cucumis of Fabricius.

Baffin's Bay (Fabricius).

Idyia roseola AGASS.

Idyia roseola FACK. List of Animals dredged near Caribou Island. 1863.

In the youngest Idyia which I have had the opportunity to observe the digestive cavity, the eight ambulacral rows, the lateral chymiferous tubes were already developed. When seen from above, the ambulacral cavity has the shape of an eight-lobed rosette, with loops of different size.

occupying half the space of the spherosome, seen in profile (Fig. 52), and the whole when seen from the abactinal pole (Fig. 53). We are struck by the immense size of the lateral tubes (l), and find that the inequality in the lobes of the ambulacral cavity is caused by the greater size of

In Idyia, owing to a mistake in the lettering of the figures, c' is the long tube, and c the short ambulacral tube, so that the lettering of Idyia does not exactly correspond to that of the other young Ctenophora.

Fig. 52. Young Idyia, seen from the narrow side.
Fig. 53. Young Idyia, seen from abactinal pole.
Fig. 54. Young Idyia, in which the ambulacral tubes are distinct, seen from the narrow side.
the longitudinal ambulacra, the rows of locomotive flappers extending but little way from the abactinal pole, as is the case in Pleurobrachia. We find also the whole sphaerosome covered with large pigment cells.

In specimens slightly older, the difference in size between these two sets of tubes becomes more marked in proportion as they become separated and distinct, as is seen in the two figures, in profile (Fig. 56) and from above (Fig. 55). The manner in which the ambulaeral tubes are formed, by the drawing up into loops of the original chymiferous cavity, is very easily followed in Idyia. It is the same in all the Ctenophora.

Fig. 55. Fig. 54, seen from the abactinal pole.
Fig. 56. Somewhat more advanced than Fig. 54, seen from the broad side.
Fig. 57. The chymiferous tubes, c, have extended to level of actinostome; narrow side.
Fig. 58. The chymiferous tubes, c, have united with the lateral tubes, and formed a circular tube, towards which the short ambulacra, c, are fast pushing their way. First trace of the ramifications on the long tubes, c'. Figs. 58–60 are seen from the broad side.
Fig. 59. The short ambulacra, c, have nearly united with the circular tube; the spurs of the ambulacra have become more numerous and quite prominent.
Fig. 60. The circuit is now complete between the short and long ambulacra. The spurs or ramifications of the chymiferous tubes are numerous, resembling somewhat those of the adult.
I have observed; but as the tubes of the other genera are so soon hidden by the rows of locomotive flappers, it becomes more difficult to follow this separation than in Idyia, where the ambulaera retain always a great size, and develop faster than the rows of flappers which cover them. The longitudinal ambulaera increase rapidly in length, pushing their way through the gelatinous mass (Fig. 56, c) till they reach the level of the mouth (Fig. 57); they then bend inwards (Fig. 58) till they meet the lateral chymiferous tube. The lateral ambulaera go through the same process (Figs. 58, 59); and thus we have formed, by the junction of the ambulaera with the lateral chymiferous tubes, a circular tube round the mouth. (Fig. 60.) The distinction between the longitudinal and lateral ambulaera is always maintained by the length of the rows of locomotive flappers which cover the ambulaeral tubes. The fringed abactinal apparatus is in the young a circular ring; afterwards it has four folds developed at the extremity nearest the sensitive bulb (Figs. 59, 61), which soon become fringes similar to those of the adult. Shortly before the circuit is thus completed (Figs. 58, 59), the ambulaera of the young Idyia give out a few lateral processes, the first traces of the ramifications of the ambulaera of the adult (Fig. 62), which become more and more numerous until the processes branch as in Fig. 60.

The short chymiferous tubes are, as in Pleurobrachia, on each side of the lateral tubes, while in Bolina this is not the case, the long tubes being near the short transverse axis.

Idyia cyathina A. Agass.

This species differs from the Idyia roseola Agass. of the coast of New England, by the sudden widening of the sphericome from the abactinal pole. It is widest at two thirds the distance from the mouth; it then tapers as suddenly for another third of the distance to the mouth, and

Fig. 61. Fig. 57, seen from the abactinal pole.
Fig. 62. Adult Idyia, reduced in size one half. a, oral opening; b, lateral radiating tube; c, circular tube; d, e, f, g, h, vertical rows of flappers. Seen from the broad side.
then very gradually. The actinal extremity of the spherosome is slender and exceedingly movable, and the edges of the actinostome can be extended so that it presents the appearance of two distinct lobes. The ovaries and spermares are much longer sacs than in *I. roscola*, and not so numerous. The locomotive flappers do not extend as far down the chymiferous tubes as they do in our species, though this difference may only be one of age. Found in the Gulf of Georgia, W. T., and in the eastern part of the Straits of Fuca, during the summer of 1859. The habits of this *Idyia* are somewhat different from those of our species. Instead of the sluggish movements which characterize *Idyia roscola, Idyia clathina* is very active, and seems to retain the embryonic features of the genus,—short rows of flappers, and great activity in its adult condition.

Northwest coast of North America (A. Agassiz).

Cat. No. 287, Gulf of Georgia, W. T., A. Agassiz, 1859.

IDYIOPSIS Agass.

Short vertical axis; ambulacra very prominent; interambulacra concave; fringes of circumscribed area arranged in two prolonged circles; numerous branching tubes arising from circular tube; compression of the body very striking. (Agassiz.)

Idyopsis Clarkii Agass.

It remains yet to be shown whether the two species of *Idyiopsis* here mentioned may not be identical with species of *Idyia* described by Eechscholtz as found on the Brazilian coast and in the Gulf of Mexico. The figures of *Idyiopsis* given by Professor Agassiz are here reproduced. (Figs. 63, 64.)

South Carolina (L. Agassiz).

Fig. 63. *Idyopsis Clarkii* seen from the broad side. *f*, funnel; *l', l",* anterior and posterior ambulacra; *l", l",* lateral ambulacra; *d*, digestive cavity; *o*, mouth; *r*, the lateral tube.

Fig. 64. Fig. 63, seen from the abactinal pole. *c*, circumscribed area; *l", l", l", l", lateral ambulacra; *l", l", l", l", anterior and posterior ambaulacra.
Order Discophoræ Esch.

Idyiopsis affinis Agass.

Gulf of Mexico, Tortugas, and Florida (L. Agassiz).

Suborder Rhizostomeæ Agass.

Family Rhizostomidae Esch.

Rhizostomidae Esch. Syst. der Acal., p. 42. 1829.

Stomolophus Agass.

Stomolophus meleagris Agass.

Cephea rhizostoma Gibbes (non Lamk.). Fauna of South Carolina. 1847.

Atlantic Ocean, coast of Georgia.
Catalogue No. 335, Warsaw Shoals, Georgia, L. Agassiz.
Museum diagram No. 8 after L. Agassiz.
Family POLYCLONIDÆ Agass.

POLYCLONIA Br.

West Indies (Pallas); Florida, Key West, and Key Largo (L. Agassiz).

Cat. No. 332, Tortugas, Fla., March, 1858, L. Agassiz.

Cat. No. 333, Key West, Fla., March, 1858, L. Agassiz and J. E. Mills.

Cat. No. 334, Key West, Fla., March, 1858, L. Agassiz and J. E. Mills.

Cat. No. 346, Florida, L. Agassiz.

Cat. No. 383, Havana, Professor F. Poey.

Museum diagram No. 8, after L. Agassiz.

SUBORDER SEMÆOSTOMEÆ Agass.

Family AURELIA DÆ Agass.

AURELIA Pér. et Les.

Medusa Esch. Syst. der Acal., p. 61. 1829.

Scyphista Sars. Bidrag til Sødyrenes Nat. 1829.

Aurelia flavidula Pér. et Les.

Aurelia flavidula Agass. Cont. Nat. Hist. U. S., III. Pis. 6, 7, 8, 9, 11, 11', 11'; Pl. 10, Figs. 18, 22, 31, 32, 36; Pl. 10', Figs. 4', 13, 15', 16-41; Pl. 11', Figs. 1-13; IV. pp. 10, 160.
Aurelia flavidula Packard. A List of Animals . . . 1863.

Occurs from March to the end of October; they collect together, and form large banks at the spawning season. Professor Agassiz has already spoken of the possibility of this species proving identical with the Northern European Aurelia aurita. But this, as well as the identity of Cyanea arctica with the European representative, can only be decided after renewed examination of these species.

Figs. 65, 66 are copied from Professor Agassiz's Contributions; they give a profile, and a view from the abactinal pole, of our Aurelia.

Greenland (Fabricius); New England (Gould, Agassiz).

Cat. No. 337, Nahant, 1861, L. Agassiz.
Cat. No. 338, Nahant, 1861, A. Agassiz.
Cat. No. 339, Nahant, 1858, L. Agassiz.
Cat. No. 341, Trenton, Me., 1860, Verrill and Shaler.
Cat. No. 347, Boston, 1862, H. J. Clark.
Cat. No. 367, Gulf of St. Lawrence, 1861, Anticosti Expedition.

Museum diagrams Nos. 9, 10, 11, after L. Agassiz.

Fig. 65 is a profile view of Aurelia flavidula, much reduced.
Fig. 66 an abactinal view of Aurelia flavidula. I, II, III, IV, are the ambulacral zones; a, b, c, d, the interambulacral zones; 1, 2, 3, 4, a, b, the respective halves of these systems.
Aurelia labiata Cham. et Eysen.

Aurelia labiata Cham. et Eysen. N. Acta, X. p. 358, Pl. 38, Fig. 1.
Medusa labiata Esch. Syst. d. Acad., p. 64. 1829.
Oegroe labiata Bl. Man. d'Actinol., Pl. 42, Figs. 1, 2. 1834.

Many of the Discophora of the southern part of the Northwest Coast must breed during the whole year, as I have found the adult with the ovaries fully developed during nearly every month of the year, in the harbor of San Francisco. This is at least the case with Phacellophora and Aurelia, which are the two most common genera of the harbor of San Francisco. Further north, however, in the Gulf of Georgia, the Discophore pass the winter in their hydra state.

North California (Cham. and Eysen.); California (Eschscholtz); San Francisco Bay (A. Agassiz).

Aurelia marginalis Agass.

Florida, Key West (L. Agassiz).
Cat. No. 352, Key West, Fla., L. Agassiz.

Family STHENONIÆ Agass.

HECCÆDECOMMA Br.

Heccædecomma ambiguum Br.

A species of this genus was observed in the Straits of Fuca, agreeing with the description and figures of Mertens so closely, that it is probable he observed this same species on the coast of Russian North America.

Port Townshend, W. T. (A. Agassiz).
The number of species of large Discophorous Meduses found on the western coast of North America gives to the Acalephian Fauna of California a very characteristic stamp, when compared with that of the eastern coast.

Petropaulowsk (Mertens); San Francisco Bay (A. Agassiz).

Family CYANEIDÆ Agass.

This species attains an enormous size. I measured myself a specimen at Nahant, the disk of which had attained a diameter of seven and a half feet, the tentacles extending to a length of more than one hundred and twenty feet. Our total ignorance of the young of these large Discophoræ is due to their peculiar habits. As has already been suggested, they probably remain a great part of the time groping about
the bottom of the sea, apparently coming to the surface only in their adult condition. Having accidentally visited the wharves of Province-

town harbor early one morning, between four and five, I was astonished to perceive what a large number of young Cyanææ were floating

Fig. 67. Cyanea arctica very much reduced. The tentacles are cut off for want of room.
about, measuring all the way from a quarter of an inch to three inches in diameter. On my return to the same place at seven o'clock, although not a breath of air had ruffled the surface, they had all returned to deeper water. The early habits of the young Cyanea may be only one of many similar instances of early rising among Acalephs. Fig. 67 is copied from the Contributions of Professor Agassiz.

Greenland (Fabricius); Northeastern Coast of America, from Bay of Fundy to Boston Harbor (Gould, Agassiz); Long Island Sound, Vineyard Sound (A. Agassiz).

Cat. No. 326, Chelsea Beach, Oct. 1851, L. Agassiz.
Cat. No. 327, Nahant, Aug. 1858, L. Agassiz.
Cat. No. 328, Nahant, Aug. 1858, L. Agassiz.
Cat. No. 369, Gulf of St. Lawrence, 1861, Anticosti Expedition.
Museum diagrams Nos. 12, 13, after L. Agassiz.

Cyanea fulva Agass.

The youngest specimen of Cyanea which has been observed measured about one third of an inch in diameter. Its peculiar habit of always remaining at the bottom of the vessel in which it was kept, seemed to explain — until the observations, above mentioned, of the early habits of *Cyanea arctica* — the periodic appearance of adult Medusae at certain times of the year, simply for the purpose of spawning, while for the remainder of their life they remain groping near the bottom. In general appearance the young Cyanea resembles the Cyaneidae. It has but few marginal tentacles, the centre one being developed far above the others; the separate lobes of the actinostome are, however, distinct, and do not form the inextricable mass of curtains surrounding the actinostome of a Cyanea. The digitate appendages are developed in pairs on each side of a median line, indicating the position of the future genital organs. This gives us at once the relative position of the Cyaneidae and Pelagidae, the latter being only permanent forms resembling somewhat embryonic Cyaneidae.

Long Island Sound (L. Agassiz); Vineyard Sound (A. Agassiz).
Cat. No. 331, Naushon, A. Agassiz, Sept. 1861. Young.

Cyanea versicolor Agass.

South Carolina (L. Agassiz).
Cat. No. 329, Charleston, S. C., 1852, L. Agassiz.
Cyanea Postelsii Br.

Cyaneopsis bekringiana Br. Mém. Ac. St. Pet., Pl. 11, Fig. 1. 1838. Young?
Cyanea ferruginea ESCH. Syst. d. Acal., p. 70. 1829.

This species is extremely abundant during the Fall, in the Gulf of Georgia and the Straits of Fuca, and rivals in size its representative on the eastern shores of North America.

Kamtschatka, Aleutian Islands, and Western Coast of North America (Eschscholtz); North Pacific, Norfolk Sound, between Sitka and Unalaschka (Mertens); Port Townsend, W. T. (A. Agassiz).

Family PELAGIDÆ Geg.

PELAGIA PÉR. ET LES.

Pelagia ESCH. Syst. der Acal., p. 72. 1829.
Pelagia LESS. Zool. Acad., p. 388. 1843.

Pelagia cyanella PÉR. ET LES.

Pelagia cyanella ESCH. Syst. der Acal., p. 75. 1829.
Pelagia cyanella Bosc. Hist. Nat. des Vers., II. p. 140, Pl. 17, Fig. 3.
Medusa pelagia LINN. Syst. Nat.
Pelagia noctiluca CHAM.; in Choris' Voyage Pittoresque, p. 3.
Dianthus cyanella LAMK. An. s. Vert., II. p. 507.
Dianthus denticulata LAMK. An. s. Vert., II. p. 507.

This species (Fig. 68) is found along the Florida Reef. In this genus the eggs develop directly into the young Medusae, and the embryos are never attached to the ground.

Caribbean Sea (Swartz, Löfling); Coast of Florida, Tortugas (L. Agassiz).

Fig. 68. P. pelagia cyanella Pér. et Les. (copied from Agassiz's Contributions). a, umbrella; m, actinal appendages; t, marginal tentacles.
Pelagia Brandtii Agass.

Pelagia denticulata Br. (non Pér. et Les.). Mém. Acad. St. Pet., p. 383, Pl. 14, Fig. 2. 1838.

Aleutian Islands (Mertens).

Dactylometra Agass.

Dactylometra quinquecirra Agass.

Mr. Desor has described, in the Proceedings of the Boston Society of Natural History, a Pelagia under the name of *P. quinquecirra*; as his description is hardly sufficient to enable one to recognize it, I add the following particulars, on the supposition that the Pelagia which I found at Naushon is identical with the one described by Mr. Desor.

Several specimens of this Pelagia were taken at Naushon, the disk measuring from four to eight inches in transverse diameter, and one and a quarter to two inches in height. The general color of the disk is yellowish blue, the surface being covered with reddish-brown spots (Fig. 69), crowded more thickly towards the abactinal pole. The spotted surface does not reach the margin of the disk; only dotted lines extend from the lobes until they are lost in the more numerous spots of the central part. The marginal tentacles have the same color as the spots of the disk.

There are five between each of the eight eyes, arranged, one, the largest, in the middle of the broader central lobe, and one on each side.

Fig. 69. *Dactylometra quinquecirra* Agass, one fourth the natural size.
of the smaller lobe, the shorter tentacles being placed nearest the eyes. There are eight marginal lobes in which the eyes are placed, eight large lobes in the middle of the space between the eyes, from which the large tentacles arise, and the space between this large lobe and the lobe of the eye is occupied by the small lobes on the sides of which the smaller marginal tentacles are placed,—making in all thirty-two marginal lobes. The fringes of the actinostome extend in four simple thick lobes, with frilled edges, about twice the length of the transverse diameter; they are flesh color. The ovaries are seen from above as four large yellow bunches. These Medusae are nocturnal in their habits; they are only occasionally found floating at the surface during the day, while at night, in the same localities, the bottom swarms with these large masses of dull phosphorescence, moving about with the greatest rapidity. When kept in tanks, they remain torpid during the day at the bottom of the jars, and when night comes on begin to become more animated, and soon move briskly about, emitting a dull phosphorescent light. This Pelagia is always accompanied by a species of Clupeoid, found in the folds of the fringes of the actinostome, moving along with the jelly-fish, which, when they are pushed off accidentally, rush back to their place of shelter. From twenty to thirty specimens have been found swimming in the fringes of the actinostome.

It is strange that the fish should go there for shelter, for every once in a while one of them pays the penalty by being swallowed, without this disturbing the others in the least; they in their turn find food in the lobes of the actinostome, and even eat the folds themselves, until their turn comes to be used as food. I have seen in this way three fishes eaten during the course of as many days. The specimens measured about an inch in length. Sars, Lennart, and Peach have observed this same kind of parasitism of certain species of fishes upon other Discophorae. Nor is this limited to Acalephs; some species of Holothurians, and even a Culeita, are said to give refuge to fishes.

It is somewhat strange that almost all the Medusae which have been observed are found in the brightest sunshine only, or in very dark nights. Early in the morning, and till about ten o'clock, even on clear days, Medusae do not make their appearance, while from eleven till one or two o'clock they can be caught in abundance. After that time they disappear gradually, and late in the afternoon, towards sunset, it is rare to see a single jelly-fish. Between nine and twelve o'clock at night, they come to the surface again; and that hour, in fact, is one of the most favorable for collecting, in spite of the darkness.

Nantucket Bay (Desor); Naushon (A. Agassiz); between Bermudas and Azores (J. Drayton).

Cat. No. 343, Naushon, Mass., Sept. 1861, A. Agassiz.
Cat. No. 388, Bermudas, A. S. Bickmore.

NO. II.
The species of Polybostricha and Melanaster which are here enumerated were observed during a calm off the bar of San Francisco; and although tolerably accurate notes were taken at the time, yet they are not sufficient to warrant the description of these species under new names. They are therefore mentioned here more for the sake of the geographical distribution of these genera; and as some of the marine animals of Kamtschatka are found on the coast of California, it is by no means improbable that the species I have referred to the figures of Brandt will prove, on closer examination, to be identical with them.

Polybostricha helvola Br.

Aleutian Islands, Sitka (Mertens); Punta de los Reyes, California (A. Agassiz).

MELANASTER AGASS.

MELANASTER MERTENSI AGASS.

Kamtschatka and Avatska Bay (Mertens); off San Francisco Bar (A. Agassiz).
Suborder HAPLOSTOMÆE AGASS.

Family THALASSANTHÆE LESS.

Thalassanthes LESS. Zooph. Acal., p. 298. 1843.

FOVEOLIA Pér. et Les.

Cunina BL. Man. d'Actinol., p. 279. 1834.

Foveolina octonaria A. AGASS.

Cunina octonaria McCr. Pls. 4, 5, 6, 7, for Embryolog. Hist.; Elliot Soc., pp. 1-36. 1856.

CAMPANELLA BL.

Fritz Müller was the first to show (Wieg. Archiv., 1861) that the position of the Æginitæa and Charybdeidae among the Hydroids was not a natural one. He proposed for the reception of these groups a new division equivalent to the Discophora and Hydroids. But as he considers the Ctenophora and Hydromedusae as the two great divisions of the Acalephs, his group of Ægineæ would hold very nearly the same rank as that which we are induced to assign to it here,—that of a suborder among Discophora. From the examination of the only species of Campanella thus far found on our coast, and a comparison
with the two species of Trachynema here enumerated, I am inclined to add, near this suborder, two other families, the position of which in the different systems of classification has always been a great puzzle. I mean the Trachynemidae and the Geryonidae (Persa, Aglauridae).* The peculiar solid character of the bell of these families, incapable of contraction to any extent, is in striking contrast with the transparent flimsy disk of the true Hydroids, reminding us of the solid mass of the larger Discophorae. The character of the development, also, which takes place directly from the egg, differs from that of the true Hydroids, and we should thus remove from them those Jelly-fishes which do not pass through an alternate generation. The peculiar character of the marginal appendages of the Trachynemidae, so different from anything found among the true Hydroids, and which resemble so closely those of the Charybdeidae, is another character in favor of this division, as well as the nature of the veil, which is a thick, solid, folded membrane, approaching somewhat in character the actinal pouches formed by the veil of Campanella.

Campanella pachyderma A. Agass.

This small Medusa is particularly interesting on account of the light it throws on the systematic position of the Aeginidae. Having the general appearance of the Aeginidae, it has, however, distinctly marked radiating and circular tubes; the genital organs are developed, as in that family, in horseshoe-shaped pouches arranged round the base of the proboscis, which projects through a small space left by the pendent folds of the veil beyond the level of its actinal surface. The circular tube is thus apparently placed at nearly one third of the height of the bell, owing to the great expansion of the eight lobes of the lower floor. The veil is attached at the inner extremity near the genital pouches, and between every two of the chymiferous tubes it is drawn up, forming a distinctly marked indentation. The position of the genital pouches is very similar to what we find among other Discophorae, as the Lucernaridae and Cuminidae, for instance, where they form an elongated lobed rosette round the centre. The genital pouches extend in a continuous line round the base of the proboscis. The shape of the bell is a somewhat depressed hemisphere, flaring slightly at the base; the tentacles are carried somewhat stiffly (Fig. 70), and are capable of but limited contraction and expansion; the proboscis equals in length the height of the bell; it is conical, and terminates in a smooth opening. The veil is not very opaque, and when the medusa is seen from the actinal side (Figs. 71, 72), the chymiferous tubes, as well as the circular tube,

* From the figure given by Gegenbaur of the pedunculated marginal bodies in Aglaura, the affinity to Trachynema (Circe) is unquestionable.
can readily be seen through its thickness. The bell itself is of a dirty yellowish color, with dark sorrel-colored spots scattered thickly over its surface; these pigment spots are similar to the little bunches of lasso cells found on the surface of Aurelia. The pouches are capable of expansion and contraction, as it will often be seen that the proboscis has considerable play when the pouches are thrown out beyond the

Fig. 70. Profile view of Campanella.
Fig. 71. Actinal view of Fig. 70; the tentacles are cut off.
Fig. 72 is a somewhat more magnified view of Fig. 71, in which the pouches are thrown out beyond the circular tube. p is the outer wall of the proboscis; g, the genital pouches; f, the place of attachment of the veil, as seen from the actinal side; f', one of the pouches formed by the veil; f", the part of the veil intermediate between two pouches; r, the base of a tentacle.
Fig. 73 is a view of a part of the actinal surface in the condition of Fig. 71, when the pouches are drawn closely round the proboscis; lettering as in Fig. 72. p', interior of proboscis.
Fig. 74 is a magnified profile view of a portion of the base of a tentacle. c, the circular tube; t, the chymiferous tube; p", the pigment spot on lower surface of bulb; m, the upper part of sensitive bulb, in which pigment cells are loosely scattered.
Fig. 75. View of basal portion of tentacle, seen from above; lettering as in Fig. 74. l, clusters of lasso cells; o, outer wall of bulb.
margin of the circular tube (Fig. 72), while at other times it is closely hemmed in on all sides. (Fig. 73.) The base of the tentacles swells out above and below the chymiferous tube, forming a large bulb, in the upper portion of which pigment-cells of a brownish-red color (Fig. 73, m) are loosely scattered, while in the lower portion (Figs. 74, 75, p") a dark concentrated pigment-spot is found. The tentacles are hollow, and are surrounded for their whole length by clusters of lasso cells (Fig. 75, l) similar to those of young Tubularian Medusae, such as Coryne and Syndiction. The size of this Medusa is about one twentieth of an inch in diameter. Found at Nahant, September, Alex. Agassiz.

Museum diagram No. 16, after Alex. Agassiz.

ÆGINOPSIS Br.

Æginopsis Laurentii Br.

Laurent Bay, Behring's Straits (Mertens).

Suborder TRACHYNEMIDÆ A. Agass.

Forbes, in his Natural History of the British Naked-eyed Medusae, characterized as a family the Circeidae; at that time only a few other species of this group were known, but so imperfectly described that even at the present day the natural affinities of these Medusae are far from being well ascertained. Gegenbaur, who has studied Medusae which I suppose to be only the young of closely allied forms, has also separated his young Medusae as a distinct family, under the name of Trachynemidae. The Dianaea conica of Lesson may even prove to be the adult of his Trachynema cilium, as it is evident from the drawing of Lesson* that he has figured there a Medusa closely allied to Circe Forbes, and perhaps identical with it. A comparison of Trachynema cilium (Geg. Pl. IX. Fig. 6) with the young specimens of Circe here figured, will show the close affinity of these two Medusae. The family name of Trachynemidae ought therefore yield to that proposed

* Ann. Scien. Nat., Vol. X. Pl. 6, Fig. 3.
by Forbes; unfortunately, the name Circe had already been applied to a genus of Mollusks, before Brandt proposed it in 1838, and we have therefore retained the name of Gegenbaur. Gegenbaur placed these Medusae in the vicinity of the Eucopidae; but a close examination of their characters, to which I have already referred when speaking of Campanella, leads us to remove them—as well as the Aglauridae, Geryonidae, and Leuckartiidae—to the Discophora Haplostomeae, as a separate suborder closely allied to the ΑΕginidae. Dr. Fritz Müller, to whom I had suggested the probability of Circe being the adult of Trachynema, says, in one of his letters, that he has found Trachynema near Desterro; "in consequence of this, it is highly probable that they are the young of Tamoia, never having met with Circe on our coast." If this should prove to be the case, we have a very strong argument in favor of joining the Trachynemidae (Circeans) with the Discophora.

Family TRACHYNEMIDÆ Gegenb.

TRACHYNEMA Gegenb.

Trachynema Gegenb. Generationswechsel, p. 50. 1854.

Trachynema camtschaticum A. Agass.

A few specimens of this beautiful little jelly-fish (Fig. 76) were caught on the shores of Galiano Island, in the Gulf of Georgia, W. T. The greatest diameter is situated on a level with the point of suspension of the ovaries. The ovaries are flat, triangular-shaped (Fig. 77), the chymiferous tubes very slender. The solid prolongation of the abactinal portion of the spherosome, which extends, in the Eastern species, to a short distance of the actinostome, is much shorter (Fig. 78); the chymiferous cavity is especially long, and extends to the
actinal pole in the ordinary state of expansion (Figs. 76, 79); it is only slightly contractile, and terminates in four stout lappets. (Fig. 80.) The outline of the abactinal portion of the spherosome is conical, with two very slight curves, one immediately above the point where the chymiferous tubes turn towards the actinal pole, along the solid prolongation of the spheromere, and the other nearer the abactinal pole. The outline of the spherosome bends very suddenly towards the actinal pole immediately above the point of attachment of the ovaries, somewhat as we have it in younger specimens of Trachynema. The number of spheromeres is eight, and that of the oral appendages four. The ambulacral tentacles (40 to 48) are rather contractile, and when contracted appear as if they had been knotted. The general color is very pale pink; the ovaries, ambulacral tentacles, and the proboscis being of a light-brown color. Although generally this medusa moves very slowly, when disturbed its movements are very rapid; and instead of continuing in the same direction, the animal draws all its tentacles inside of the actinal veil, and then suddenly throws them out again, this contraction turning the medusa almost upside down, and starts off in nearly the opposite direction from that which it had previously pursued. This species was only seen during a short time in July. The drawing of Brandt seems to have misled Forbes; he speaks of the want of ocelli of the British species as distinguishing it from the C. camtschatica; what Forbes has taken for ocelli are only sections of the chymiferous tubes leading into the peripheric tube.

Kamtschatka (Mertens); Galiano Island, Gulf of Georgia, W. T. (Alex. Agassiz).

Cat. No. 282, Gulf of Georgia, W. T., 1859, A. Agassiz.

Fig. 76. Profile view of Trachynema camtschaticum, slightly magnified.
Fig. 77. One of the genital organs. g, point of attachment to chymiferous tube.
Fig. 78. Section of Trachynema to show the size of the gelatinous prolongation, p, and the mode of attachment of the genital organs. g.
Fig. 79. Chymiferous cavity of Trachynema at the end of the gelatinous proboscis.
Fig. 80. View of Trachynema from above, to show the shape of the lips of the actinostome. c, chymiferous cavity at base of proboscis into which the tubes lead; p, gelatinous part of proboscis; l, lips of actinostome; g, opening formed by contraction of part of the chymiferous cavity.
Trachynema digitale A. Agass.

Turris (Circe) digitalis Mörch (non Forbes). Besk. af GrønI., p. 95. 1857.
Eirene digitale Esch. Syst. der Acal., p. 95. 1829.

There is considerable doubt as to the specific difference of this species of Trachynema from the English Circe of Forbes, and from the Circe camtschatica of Brandt, the series of young observed at Nahant being the only one which gives us any measure of the changes one species undergoes during its growth. It is evident from the figure of Forbes that the genital organs are but slightly developed; in the north-

western species the only specimens observed were all males, while the only adults of this species obtained on our coast were females. This question must be left undecided until we have a complete history of the English species.

The adult medusa (Fig. 81) is characterized by the thinness of the bell, the great size of the gelatinous proboscis, which extends nearly to

Fig. 81. Adult female Trachynema, seen in profile; magnified.
Fig. 82. Actinal view of the veil and circular tube of a very young Trachynema. c, c, c, c, tentacles opposite the chymiferous tubes; greatly magnified.
Fig. 83. Profile view of a part of the circular tube to show the folds of the veil. c, one of the pedunculated marginal capsules; t, young tentacle; v, folds of the veil; somewhat more magnified than Fig. 82.

NO. 11. 8
the level of the circular tube, and the small size of the digestive cavity. The eight chymiferous tubes are broad, and their course can readily be traced along the proboscis. The summit of the bell is quite conical; the chymiferous tubes lead into a broad circular tube, opening into the tentacles, which are hollow; the tentacles appear to be easily lost, as it is rare to obtain adult specimens in which we find anything more than mere stumps in the place of tentacles. I have been unable on this account to ascertain the normal number of tentacles in the adult; they never seem to become very numerous. (See Fig. 81.) A tentacle is placed opposite the base of each chymiferous tube, c, c, c, ... Fig. 82, being a view from the actinal side of the youngest Circe observed; between the chymiferous tubes there are in these young Medusae two other tentacles. We find also four marginal capsules in the young as well as the adult; their number does not increase with age. The capsules are large, ellipsoidal, garnet-colored bodies, enclosed in a fold, standing out from the circular tube as if attached by a short peduncle. (c, Fig. 83.) The veil is thick, snugly folded at the inner margin (Fig. 82), the larger folds extending to the circular tube. Owing to the slight contractility of the bell of these Medusae, they use the veil as their principal means of propulsion, bending it into the cavity of the bell, and then throwing it out with great force (see Fig. 86); we have nothing of the graceful motions of the gelatinous disk, so characteristic of the Hydroid Medusae. In an adult, when seen in profile, the folds of the veil are so thick that they are easily mistaken for rudimentary tentacles (c, v, Fig. 83); it is only when we see the veil turned in, or expanded fully outside of the bell, that their true nature is understood. In adult females, the cavity of the bell is almost filled by the eight sausage-like ovaries which hang down from near the upper part of the chymiferous tubes, almost to the extremity of the gelatinous proboscis. (Fig. 81.) They are of a milky color, the bell is of a slightly pinkish tint; far from being transparent, it has a horny look, and be-

Fig. 84. Profile view of a young Trachynema, about one eighth of an inch in height.
Fig. 85. Trachynema somewhat more advanced than Fig. 84.
comes wrinkled between the chymiferous tubes; the tentacles, when contracted, become crimson at the extremity.

The young Medusae are very different in shape from the adults. Small specimens, measuring not quite an eighth of an inch in height (Fig. 84), are quite globular; they have but few tentacles (Fig. 82), the ovaries are not developed, the gelatinous proboscis is a mere knob at the bottom of the bell, from which hangs down quite a long digestive cavity. The abactinal part of the bell projects but slightly beyond the general outline. It is in this stage that it resembles so closely the *Trachynema ciliatum* of Gegenbaur. When disturbed, they carry the lips of the actinostome turned up, in a very characteristic manner, as Gegenbaur has figured them. In somewhat older specimens (Fig. 85) the bell has become more elongated, the tentacles more numerous, the ovaries make their appearance as small pouches, as in Eucope, and the gelatinous proboscis has extended somewhat into the cavity of the bell. In still older forms (Fig. 86) these parts have all taken a more prominent development, and we readily recognize, in the somewhat elongated bell, with the large proboscis and slightly pendent ovaries, the future adult Trachynema (Fig. 81), in which the development of the gelatinous proboscis, of the ovaries, of the tentacles, the lengthening of the bell, and its increase in thickness at the abactinal extremity, have been carried still further. The adult medusae attain a height of an inch or an inch and a half.

I have identified this Medusa with the *Medusa digitalis* of Fabricius. Forbes had, in his Naked-eyed Medusae, supposed a species of Turris to be identical with it; after a careful perusal of the description of Fabricius, I am satisfied that it does not belong to the genus Turris, but to Circe of Brandt, or Trachynema of Gegenbaur. Mörch, in his List of Medusae of Greenland, retains the generic name of Forbes, and makes it synonymous with Circe; this is certainly a very different interpretation of the genus Turris of Lesson from what it has received thus far by any writer on Acalephs.

Baflin's Bay (Fabricius); Massachussets Bay, Nahant (Alex. Agassiz).
Museum diagram Nos. 16, after Alex. Agassiz.

Fig. 86. Young Trachynema, measuring over one third of an inch in height; the veil is thrown out beyond the level of the circular tube.
PERSA McCr.

Persa incolorata McCr.

Persa incolorata McCr. Gymn. Charl. Harb., p. 104, Pl. 12, Fig. 3. 1857.

Charleston Harbor (McCady).

Family LEUCKARTIDÆ Agass.

LIRIOPE GEGEB.

Diatomea Q. and G. Voyage de l’Uranie, p. 566.
Eurybia Escu. Syst. d. Acal., p. 118. 1829. Young?

Liriope tenuirostris Agass.

Florida, Key West (L. Agassiz).

Liriope scutigera McCr.

In company with Liriope tenuirostris is found another species of Liriope (Fig. 87), which may prove identical with the Liriope scutigera of McCrady, although it differs in the shape of the ovaries, which are more heart-shaped than he describes. The description of McCrady agrees better with the figure of Liriope catherinensis of Fritz Müller, with which it may prove identical.

Charleston, S. C. (McCrady).

Fig. 87. Liriope scutigera McCr.
Suborder LUCERNARIAE JOHNST.

Clark has made of the Lucernariae an order equivalent to the Hydroids and the Discophoræ; but it should be remembered at the same time that his Acalephæ correspond to the Hydroid and Discophorous Medusæ of other authors, and do not include the Ctenophoræ. We would reduce this group to the level of a suborder; for, as Professor Agassiz has very justly said, the Lucernariae are only pedunculated Discophoræ, and have no claim to be considered as a group of a higher value than a suborder. They seem to bear the same relation to the free Discophoræ which the Pentacrinidæ do to the Comatulidæ. Their mode of development may show that their separation as a distinct suborder is giving even too much weight to their embryonic character; and we may find, with future investigations, a somewhat similar relation between them and the Strobila, from which free Discophoræ are produced, as that which we have between the free and sessile species of Tubularians.

Family CLEISTOCARPIDÆ H. J. CLARK.

HALIMOCYATHUS H. J. CLARK.

Halimocyathus platypus H. J. CLARK.

Chelsea Beach, Mass. (H. J. Clark).

MAXANIA H. J. CLARK.

Manania auricula H. J. Clark.

Lucernaria auricula Fab. (now Müll.). Fauna Groenl., 1780, No. 332.

I give here only the principal synonymes. For the remaining synonymes of this and other species of Lucernarie, I would refer to the papers of Professor Clark.
Swampscott (Agassiz); Greenland (Fabricius); Eastport, Maine (W. Stimpson).

Family ELEUTHEROCARPIDÆ H. J. Clark.

LUCERNARIA MüLL.

Lucernaria quadricornis Müll.

Lucernaria quadricornis Sars. Fauna Littor., p. 29, Pl. 3, Figs. 1–7.

Grand Manan (W. Stimpson); Massachusetts Bay, Chelsea Beach, and Swampscott (Dr. A. A. Gould and L. Agassiz); Greenland (Fabricius).
Cat. No. 324, Owl's Head, Maine, W. Stimpson.
Museum diagram No. 14, after L. Agassiz.

HALICLYSTUS H. J. Clark.

HALICYSTUS AURICULA.

Haliclystus auricula H. J. Clark.

Luzernaria auricula Mont. Lin. Trans., IX. Pl. 5, Fig. 5.
Luzernaria auricula Sars. Bidr. Soc. dyr., Pl. 4, Fig. 1–13.
Luzernaria octoculata LAMK. An. s. Vert., II. p. 144. 1816.
Haliclystus auricula PACK. List of Animals. 1863.

Without attempting a critical revision of the Luzernaria, which has become necessary in consequence of the somewhat contradictory statements of Sars, Edwards, Allman, Gosse, Keferstein, and Clark, and for which the materials in the Museum do not afford sufficient data, I have adopted the generic names of Clark, as it is plain, from what was already suggested by M. Edwards, that the Luzernaridae do not belong to a single genus, but that several genera can very justly be distinguished upon the single genus of Luzernaria of previous authors.

The figures here introduced are of our common Luzernaria (Figs. 88, 89), and will give a tolerable idea of the varied attitudes they assume. This species is quite common, found attached to eel-grass. For a further knowledge of this group of Acalephs, I would refer to the original papers quoted above.

The young of our Luzernaria (Fig. 90) shows how much still remains to be done respecting the changes which it undergoes. In a small Luzernaria, of one

Fig. 88. Halicystus auricula, seen from the actinal pole.
Fig. 89. Different attitudes of Luzernaria, of Fig. 88, attached to sea-weed, contracted, expanded, or with the disk thrown back, and the actinostome projecting like a proboscis. These figures are of natural size.
Fig. 90. Young Luzernaria, magnified, about one tenth of an inch in height. a, anchors still retaining the shape of the tentacles, t.
tenth of an inch in height, the arrangement of the tentacles is totally different from that of the adult. They are as yet not arranged in clusters, but placed at regular intervals in one line on the edge of the disk. No difference can at present be detected between the anchors (a, Fig. 90) and the tentacles (t, Fig. 90) of the disk, showing plainly that the anchors, as Professor Clark has proved, are only modified tentacles; the peduncle is also quite short, and stout in proportion to the disk. The young Lucernaria is in this state a close representative of the genus Carduella of Allman, which may possibly prove to be only the young of some European species.

Greenland (Steenstrup); Anticosti (Verrill, Shaler, and Hyatt); Massachusetts Bay (H. J. Clark).

Cat. No. 320, Nahant, Mass., A. Agassiz, May, 1862.
Cat. No. 321, Chelsea Beach, L. Agassiz.
Cat. No. 322, Mount Desert Islands, Maine, W. Stimpson.
Cat. No. 323, Anticosti Island, Anticosti Expedition, August, 1861.
Cat. No. 380, Anticosti Island, Anticosti Expedition, August, 1861.

Halicyclustus salpinx H. J. CLARK.

Mount Desert Islands, Maine (Stimpson).

Order HYDROIDÆ JOHNST. (mod. AGASSI).

Coralliatia Tubulata, Rayosa, and Hydraria Milne Edw. & Halm.
Hydromedusæ et Siphonophoræ Vogt. Siph. de Nice.
Hydroids Huxl. Ray Soc. 1859.

From want of materials, no writer on Acalephs has thus far attempted to make use of the embryological characters noticed in the development of young Hydroid Medusæ and of the young Hydraria. From the observations of Wright on the development of *Theaumantias inconspicua*, of *Æquorea*, and from what I have had occasion to observe myself on the Hydroid of Melicertum and of Tima, we have acquired sufficient information to satisfy ourselves that Tubularian-like Hydroids stand lower than the Campanularians; while such forms as the Hydroids of
Melicertum, of Trichya, and Lafia, stand intermediate between them. Resembling the youngest stages of the Campanularian Hydrarium we have such forms as Clava and Rhyzogeton; while the more branching forms, Endendrium and Bougainvillia, remind us already of somewhat older stages. Lower still we must place Hydraetinia, where the polymorphism of the individuals is an evident sign of inferiority, reminding us of the free communities formerly separated from the Hydroids as Siphonophores. From the close resemblance of the animal of the Tabulata to such forms as Halocharis and the fresh-water Hydra, we must consider them as an order, or perhaps only a suborder standing in close relation to the Tubularians. Unsatisfactory as this may seem, these few facts throw much light on our knowledge of the relations of the Hydroids. Somewhat more satisfactory and more general results can be obtained by comparing the young Medusae in their various stages of growth. As I have already shown, in a short paper on the order of appearance of the tentacles of Hydroid Medusae, the young, when liberated, undergo great changes before arriving at their mature condition; and it requires a thorough knowledge of all these changes to be able to recognize one and the same species in its various stages of growth, and not to divide, as has been done so far, different species by the number of tentacles, of marginal bodies, or the size of the ovaries. The main characteristic of the greater number of Tubularians, when first liberated, is the totally different shape of the bell from that of the adult. The bell is very deep, the number of tentacles is small (Turritopsis, Bougainvillia, and Nemopsis); in the adult the shape of the bell has become quite globular, the tentacles have increased in number, the ovaries, which are generally absent or but slightly developed in the young Medusae, have taken a development corresponding to their age. Applying this to the standing of the different Tubularians, we should place genera such as Clava and Endendrium, in which the Medusae are always sessile, lowest in their families; next, the old genus Tubularia, such as Tubularia proper, next Corymorphia, Hybocodon, then Ectopleura, where we find the Medusae losing almost entirely their embryonic character. From these we pass to Sarsia, Syndietyon, Dipurena, Saphenia, Turris, and Turritopsis. We then have families where the localization of the tentacles, the position of the ovaries along the proboscis, and partly along the chymiferous tubes, is a character of superiority, such as Dysmorphosa, Lizzia, Bougainvillia, and Nemopsis, having a limited number of tentacles placed at stated points along the circular tube. Closely allied to these are such more Campanularian-like forms, as Melicertum, Ptychogenia, and Staurophora, where the number of tentacles is large, but which want the peculiar marginal bodies so characteristic of Campanularian Medusae, and where the genital organs are intimately connected with the digestive cavity. The young of these Medusae (Melicertum and
Staurophora) have, like the young Tubularian Medusae, a deep bell and few tentacles; these characters they lose with advancing age. The young Medusae of the greater part of the Campanularian Hydroids, with the exception of the Eucopidæ and some of the Equoridæ, also have, immediately after they are liberated, a form totally unlike that which they eventually assume. A young Clytia or Oceania has a deep bell, only a couple of long tentacles, and few marginal capsules, having a totally different arrangement from what we find in the adult. With advancing age, the tentacles and marginal bodies increase in number, the disk becomes flattened, and ovaries make their appearance along the chymiferous tubes. In the Eucopidæ the number of tentacles with which the young Medusæ are liberated is far greater, the marginal capsules being constant in young and old. The same is the case with the Equorida; they are liberated with many tentacles, and the disk, like that of the Eucopide, is quite flat. We find also among the Campanularians, in some genera, a tendency to localization of the tentacles, as in Eucheilota; or to great complexity of the marginal capsules, as in Tima and Tiaropsis; and finally a great development of the gelatinous proboscis, as in Eutima, Geryonia, and Tima. The gelatinous prolongation of the disk we must regard as an embryonic feature; the great number of chymiferous tubes is likewise a character of inferiority; so that we would place lowest among the Campanularians the Geryonopsisæ, all these having tolerably deep bells and few tentacles, more resembling the Tubularians; next the Equoridæ, some of which, in their young stages (Halopsis), resemble the Medusæ of Tubularians, with their high bell and few tentacles; next would come the Eucopidæ, having still a large number of tentacles, but where the marginal capsules are limited in number, and in which the young Medusæ at no time resemble the young Medusæ of Tubularians; finally, highest of all the Campanularians would stand the Oceanidæ, where the number of tentacles is not very great, and the complication as well as localization of the marginal capsules is very definite. The ovaries likewise guide us somewhat in this classification; they extend along the proboscis and chymiferous tubes in Tima and the Geryonopsisæ; in the Equoridæ they take their origin from the base of the digestive cavity; in the Eucopidæ they are limited, as well as in the Oceanidæ, to definite parts of the chymiferous tubes.

Were we to judge simply from the nature of the Medusæ of the so-called Siphonophoræ, the swimming bells and the sexual Medusæ, we should be justified in uniting them with the same order as Hydroids, making, of the different orders which had been proposed before, only suborders of the great order of Hydroids, and thus not recognizing the class of Siphonophoræ, as recently modified by some naturalists. There is perhaps no stronger case to be brought up in confirmation of this view, than the fact that the free Medusæ of Velella are so closely allied
to the Medusæ of some of our Tubularians, that McCrady even proposed
to separate the Velellidæ from the Siphonophoræ, and to place them
next the Tubularians; the sexual Medusæ, also, of several of these free
Hydroids resemble very closely other Medusæ, as those of Hybocodon,
Corymorphæ, and the like. When we add to this the strong argument
derived from the homology of the development of the Hydroids, whether
free or floating, as is shown hereafter from Nanomia, we can have but
little hesitation in acknowledging the value of the order of Hydroids as
first limited by Professor Agassiz, and the return, as proposed by him,
to the old subdivisions of Eschscholtz, the great master in the classifica-
tion of the Acalephæ, whose views seem to stand out brighter with
every fresh investigation. For certainly the subdivision by Lenzkart
of the Siphonophoræ into two suborders, and the uniting of Physalia
and Porpita and the like into one order with Agalma and its allies, is a
disregard of the true value of the ordinal characters which are to be
found in the combination of the float with the rest of the community,
such as we find developed in the three great phases of embryonic
growth of a Physophore. (See Nanomia.) As to the true position of
the different orders of the old group of Siphonophoræ among the
Hydroids, we cannot fail to consider them as lowest in the series; they
form communities, the different individuals of which never attain the
high degree of complication and the individuality so characteristic of
the Campanularian Medusæ, and they must therefore rank lowest, next
to Hydactinia and the like, which form the connecting link between
them and the truly fixed Hydroids.

In the limitation of the families of Hydroids, it is very difficult to
draw any line of demarcaition, whenever we attempt to separate, as dis-

tinct families, those Medusæ which are always sessile, from those which
lead an independent existence. The close affinity existing between the
Hydroids of genera in which we have free and sessile Medusæ, seems to
preclude the idea of separating them as distinct families, notwithstanding
the great difference of form between the adult Medusæ. As our
knowledge of the embryology of Hydroids becomes more extended,
cases occur more frequently in which Hydroids, so closely allied that it
is difficult to distinguish them generically, unless it be in the breeding
season, produce Medusæ which are either sessile, or lead an independent
existence; for instance, the many species of Campanularians closely allied
to Laomedea, the Tubularians of the genus Tubularia, and the different
species formerly referred to Endendrum. We must combine, as far as
we are able from existing information, our knowledge of the Medusa and
of the Hydrarium; this seems the only rational method, and one which
has already lead those who have adopted it to very important relations
of the true affinities of Acalephæ. This view of the proper method to
be followed in the classification of Hydroids has been frequently em-
ployed by Agassiz, Leuckart, and Vogt. Sars, in his paper on Corymorpha, has developed it fully, quoting many instances in support of this theory. Allman, in a recent paper on the Classification of Hydroids, has carried the same method out for the Tabularians.

Suborder Sertulariæ Agass.

Family Oceaniæ Esch. (rest. Ag.).

The free Medusæ which belong to this family are characterized in their adult condition by the flatness of the bell, and its thinness, long, hollow tentacles, not very numerous, four chymiferous tubes, marginal capsules, and a short proboscis. The Hydrarium is remarkable for its ringed or pedunculated reproductive calycæ.

The genus Thaumantias, until the time of Forbes, contained in it Medusæ belonging to several genera. Forbes first proposed to divide it, and suggested the name Cosmetira for his *Thaumantias pilosella*. Gegenbaur, in 1856, proposed another name, that of Eucope, which included several species of the genus Thaumantias, belonging to a different family, the Eucopida.

As long as the numerous species of Thaumantias, described by Forbes, have not been investigated again with special reference to the marginal capsules, it is impossible to assign many of them their true position in the genera Eucope, Oceania, and Laodicea, which have been distinguished in these Acalophs. It seems to me doubtful whether the genus Epenthesis of McCrady can be retained, and I think it will eventually prove identical with Oceania, if we limit the genus to such species as *Thaumantias hemispharica* of Forbes. The Hydra of Oceania is a Wrightia; that of the *Eucope diaphana* of our coast is a Laomedea, resembling the *L. geniculata* of England. The genus Eucope of Gegenbaur would be limited to those species which have small ovaries, occupying but a short space of the chymiferous tubes; and instead of having the long, thin, and exceedingly contractile tentacles of Oceania, have short, stout, knotty tentacles, which are carried straight from the edge of the disk, are hardly contractile, and have a prolongation inside of the circular tube.
This Medusa is one of the earliest visitants of our wharves in the spring. In company with Sarsia and Syndictyon, it occurs in great numbers during the spring months; it attains its full size in a comparatively short period (Fig. 91), spawns during April and May, and after that it is found but rarely, disappearing totally during the summer. Although so common, the Hydroid of this Medusa has not been observed. Young Medusae (Fig. 92), which are fully described in Professor Agassiz’s Contributions, are exceedingly numerous. The tentacles develop independently of the eyes, while the latter never increase in number. (See Fig. 93.) For a more detailed description of their mode of growth, see also my paper on the marginal tentacles of Hydroids.

The _Thaumantias Pattersonii_ of Greene seems to me, as far as I can make out from his description and figures, to belong to the genus Tiaropsis. There must be some error in his view from above, in which he represents black ocelli at the base of the chymiferous tubes; I doubt if
this is really the case, as we have nothing of the sort among any of the other Hydroid Medusae.

Massachusetts Bay (Agassiz).

Cat. No. 266, Boston, April, 1862, A. Agassiz. Medusa.
Cat. No. 267, Boston, May, 1862, A. Agassiz. Medusa.

OCEANIA Pér. et Les.

Oceania folleata Agass.

Charleston Harbor (McCrady).

Oceana languida A. Agass.

It must remain doubtful whether this species is not the Epenthesis folleata McCr. found in Charleston Harbor. McCrady observed only a single specimen, and his description is too short not to leave some doubt on this point. His single specimen, moreover, was not in a normal condition, as he says there were five labial appendages. From the fact that there is but one marginal capsule between each tentacle in the Charleston species, and rarely two, while there are always two, and frequently three, in the specimens taken on our coast, I would infer that they are distinct species.

The capsules are small, and contain only one large granule. The bulbs at the base of the tentacles (b, Fig. 94) are large swellings, colored with dark pigment-cells; the tentacles are thread-like, very extensible, with lasso-cells scattered

Fig. 94. Two marginal tentacles, with a portion of the circular tube. c, one of the marginal capsules in process of division; b, sensitive bulb of tentacle.
irregularly all over the surface; the walls of the tentacles are thin, leaving a wide tube running to their extremity; the labial folds of the short digestive cavity are simple, the edges not being fringed (f, Fig. 95); the bell is perfectly transparent and exceedingly thin, remaining of the same thickness close to the edge; the veil is of medium size. The ovaries and the base of the digestive cavity are light brown; the base of the tentacles is somewhat darker. The number of tentacles is from thirty-two to forty; the Medusa measures from three fourths to seven eighths of an inch in size. The marginal capsules are formed by division, a small portion of the capsule being separated by a constriction, and a granule developed in it (c, Fig. 94) forms the new capsule, which gradually becomes more and more distinct in older specimens.

The observations of Wright on _Laomedea acuminata_, combined with the development given here of a Medusa (Fig. 96) similar to the one he observed, give us the complete history of the genus Oceania. It is particularly important on account of the light it throws on the probable identity of many of the species described by Forbes under the name of Thaumantias, and which are distinguished by the greater or smaller number of tentacles, and the position and size of the ovaries. Differences, similar to those by which he has distinguished such a large number of species, are readily traced in the different stages of our Oceania. Professor Agassiz had separated the Hydroid figured by Wright, as a distinct genus, from Clytia, on account of the peculiar position of the marginal capsules, totally different from what is observed in that genus. The development of the Medusa shows this to be a correct appreciation of the differences noticed in the young; but as the genus of the adult Medusa is one already well known, Wrightia, the name given to the Hydrium by Professor Agassiz, must be rejected. We have on our coast two species of Wrightia, one of which produces planulae, and resembles, in its general appearance and mode of branching, the _Laomedea acuminata_ figured by Wright in the Edinburgh New Philosophical Journal for 1856; the latter, however, produces Medusae, while the second species is closely allied to the European _Campanularia syringa_; it has reproductive calyces similar to the calyces of the _Campanularia fastigiata_ Alder; it differs considerably from the figure of the _C. syringa_ given by Van Beneden, the stolon of our species being as strongly ringed as the pedicel; the calyce is likewise slightly constricted in the middle. This species has not been found with

Fig. 95. Magnified view of the actinostome. _T_, chymiferous tube; _f_, one of the four simple lobes of the actinostome.
reproductive calyces in March, April, or September; I am therefore unable to state whether it is the Hydrarium of our common Oceania.

A very young Oceania (Fig. 96), soon after its escape from the reproductive calycle, has a very deep bell (Fig. 96), two long tentacles and two rudimentary ones at the base of the chymiferous tubes. It resembles in its general appearance and motion the Medusa of Clytia bicophora; the bell is covered with large lasso cells, scattered irregularly over the surface; it can at once be distinguished from the latter Medusa by the absence of ovaries, the two long tentacles (t, Fig. 97), and by what characterizes at once this genus, the position of the marginal capsules (c, Fig. 97) on each side of the primary tentacles (t, t', Fig. 97), at the base of the chymiferous tubes, while in Clytia they are placed on each side of the secondary rudimentary tentacle, half-way between the chymiferous tubes. The young Medusa, in more advanced stages, has become quite conical (Fig. 98), the ovaries are forming, and, besides the two original long tentacles, we have the two rudimentary primary tentacles fully formed, as well as eight others half-way between the chymiferous tubes, and rudiments of eight additional tentacles half-way between these and the chymiferous tubes. The proboscis has likewise somewhat lengthened. In still older specimens, in which the fourth set of rudimentary tentacles has developed (t'', Fig. 99), and in which we can trace the position of the remaining sixteen tentacles (t'', Fig. 99), the ovaries have also taken a greater development, and are now ellipti-

Fig. 96. Young Medusa of Oceania languida, immediately after escaping from the reproductive calycle.
Fig. 97. The same, seen from the actinal pole, to show the position of the marginal capsules, c, on the sides of the tentacles, t, t'.
Fig. 98. Somewhat more advanced Medusa, in which traces of the ovaries can be detected.
Fig. 99. Quarter of the disk of a still more advanced Oceania, where the remaining tentacles of the adult (t'') are developing between the tentacles, t', t', t', t', as well as additional marginal capsules, c.
OCEANIA LANGUIDA.

Cal pouches, occupying about one fifth of the length of the chymiferous tubes. With advancing age the bell of the Oceania grows more and more flattened, until, in the adult (Fig. 100), it has assumed the shape of a flat segment of a sphere. New marginal capsules are developed at the same time with the rudimentary tentacles, one between every two tentacles in the younger stages; afterwards there are from two to three capsules between the tentacles in the adult. The genital organs of the adult Medusa occupy more than two thirds the length of the chymiferous tubes; when distended with eggs, as in Fig. 101, they hang in irregular lobes from the point of attachment, \(a \); the eggs are quite large; there is no difference in the shape of the male and female genital organs, those of the males are simply somewhat darker brownish-colored than the ovaries. These Medusae are among the most common on our shores; they attain their full size during September, when they are frequently met in immense shoals on warm, still, sunny days, collected together for spawning. The young (Fig. 96) make their appearance as early as the end of May. The adult Medusae assume the most extraordinary attitudes as they float along, carried about by the current; the disk is so extremely flexible that at times it seems almost as if the Medusa had rolled itself up, as in Figure 102, the tentacles being the strings by which the two edges have become fastened together. They are exceedingly lazy in all their movements, hardly contracting their tentacles when disturbed, contrasting strangely with their former activity in younger stages (Fig. 96), when they move through the water with short, rapid jerks, stopping only to take a more vigorous start. The young Medusae of Campanularians are all very active, whatever may be the habits of the adults, while in the Tubularians we have generally in the young Medusae the temperament of the adult. Young Medusae of Bougainvillia, Lizzia, and Zanclea are lazy, like the adult;

Fig. 100. Adult Oceania languida, natural size.
Fig. 101. Magnified view of an ovary. \(a \), abactinal part of the genital organ.
Fig. 102. Peculiar attitude sometimes assumed by these Medusae.
while Sarsia, Nemopsis, and Margelis are as active when young as when full grown.

Eastport, Maine (L. Agassiz); Massachusetts Bay (A. Agassiz); Buzzard’s Bay (A. Agassiz).

Cat. No. 280, Naushon, A. Agassiz, September, 1861. Medusa.
Cat. No. 450, Nahant, A. Agassiz, June, 1864. Medusa.

Oceania gregaria A. Agass.

This Medusa is somewhat smaller than its Eastern representative. It differs from it strikingly by the great length of the slender lips of the actinostome (Fig. 103); the color of the genital organs and of the sensitive bulb of the tentacles is a beautiful pale yellow, in strong contrast to the dark coloring of our species; the marginal tentacles are only moderately contractile. The whole surface of the water for several miles was often thickly covered with these Medusae. Found in the Gulf of Georgia, from June to October.

Gulf of Georgia, W. T. (A. Agassiz).
Cat. No. 124, Gulf of Georgia, W. T., June, 1859, A. Agassiz. Medusa.

EUCHEILOTA McCr.

Eucheilota ventricularis McCr.

Eucheilota ventricularis McCr. Gynn. Charl. Harbor, p. 85, Pl. 11, Figs. 1–3; Pl. 1, Figs. 1, 2.

The small Medusa represented in Fig. 104 is exceedingly common at Naushon, and I suppose it to be a young of this species, though I did not trace its development long enough to satisfy myself fully on this point. It has the characters of the genus as given by McCrady, with the exception of the ovaries, which were not yet developed in the oldest specimens observed. Young specimens, of a sixteenth of an inch in diameter, have four tentacles, one opposite each of the chymiferous tubes, of the length of the diameter of the
bell, with tentacular cirri well developed; two marginal capsules between each tentacle, and rudiments of four additional tentacles halfway between the capsules. (Fig. 105.) These tentacles have at first no lateral cirri; it is only when they have assumed the shape of the lower basal part of a full-grown tentacle that the cirri appear like two round knobs, which are rapidly developed into lateral cirri before the lash of the tentacle has been formed. The form of the young Medusa, with only four tentacles, is globular, but it soon becomes flattened as it advances in growth. The digestive cavity is a simple long tube, hanging stiffly in the interior of the bell, which has a very small circular opening; the chymiferous tubes are wide; the basal swelling of the tentacle is large and conical, narrowing very rapidly into the thread of the tentacle itself, which is exceedingly slender, with thin walls, and lasso cells scattered irregularly over its surface. The marginal capsules contain only one granule, while McCrady’s species contains three or four. This may prove to be the specific difference between these young specimens and the Charleston species, as I have not, even in those specimens which had already eight tentacles, found more than one granule, except in a single case two, in one of the capsules.

Charleston, S. C. (McCrady); Buzzard’s Bay, Naushon (A. Agassiz).

Eucheilota duodecimalis A. Agass.

This species differs from the above in having twelve marginal capsules, one on each side of the four large tentacles (c, Fig. 107), and one in the middle of the circular tube (Fig. 106); there are four long tentacles, with lateral cirri (f, Fig. 107) and long slender lashes, which are covered with lasso cells; the chymiferous tubes are wide, and from their point of junction with the circular tube arise ribbon-shaped genital organs (o, Fig. 107), which do not extend more than one third of the length of the chymiferous tube (Fig. 106); the disk is of very uniform thickness, the inner and outer surface of the bell being almost concentric to the very

Fig. 105. More magnified view of a quarter of the disk, to show the position of the capsules and tentacular cirri. 2, the second set of tentacles in Figs. 104, 105.

Fig. 106. *Eucheilota duodecimalis A. Agass.; greatly magnified.*
EUCHEILOTA DUODECIMALIS.

edge; in the cavity hangs a short urn-shaped digestive sac, attached to the four chymiferous tubes by a circular base, and not quadrangular, as in the *E. ventricularis*; there is only a single granule in each of the marginal capsules. This species seems to be full grown, as the sexual glands were very much distended with spermaries, and I could not see any traces of additional tentacles; however, as the presence of eggs and spermaries is far from being a criterion of maturity among these animals, we must have further materials to decide this point. Only three specimens of this species were found,—a very young female, the male here figured, and an older female (Fig. 107*), in which the ovaries were filled with apparently mature eggs, the genital pouches extending from the base of the chymiferous tubes to the base of the proboscis; the thickness of the bell and its shape is totally different from that of the male, if it belongs to the same species; the bell is of uniform thickness, quite squarish in outline; the trace of the connection with the Hydrarium is still very distinct, and the tentacles are carried in the erect manner so characteristic of young Hydroid Medusae, showing that, in spite of its well-developed ovaries, it must have but recently been liberated from its Hydrarium. The character of the difference between the young of these two species of Eucheilota makes it highly probable that the *E. duodecimalis* may form, when its adult is known, the basis for a separate genus; we find in the arrangement of the capsules differences similar in character to those observed between the young of *Oceania* and of *Clytia*, the adult Medusae of which are generically distinct, I cannot help surmising that we shall find differences of a like nature when the adult of *E. duodecimalis* becomes known. This is the more probable now that we know the young of *E. ventricularis*, the adult of which has so much the general appearance of an *Oceania*.

Buzzard's Bay, Naushon (A. Agassiz).

Fig. 107. Junction of one of the chymiferous tubes with the circular tube. 0, spermary; c, marginal capsule; t, one of the four primary tentacles; t, tentacular cirri.

Fig. 107*. Female Medusa of Eucheilota duodecimalis; greatly magnified.
CLYTIA LAMX.

Calicella Hincks.

The adult Medusa of Platypyxis cylindrica of Professor Agassiz is not known; he has separated this genus from Clytia from the character of the reproductive calycles only. The young Medusae are very much alike, and we may have a case here, the reverse of what we find in Sarsia and Syndictyon, of Medusae very similar in their younger stages, but totally different in the adult forms.

Clytia intermedia Agass.

Clytia volubilis A. Agass.

Campanularia volubilis Alder (non Auct.). Cat. Zool. Northumb. and Durham, p. 35.

Alder was the first to distinguish the several species which have been confounded under the name C. volubilis by different authors. Specimens in no way to be distinguished from the European C. volubilis have been found on our coast with their reproductive calycles, seeming to leave little doubt that the specimens here catalogued belong to this species.

Massachusetts Bay (L. Agassiz); Cape Cod (L. Agassiz).
Cat. No. 145, Norway, Sars. Hydromedusarium.
Cat. No. 146, Cape Cod, June, 1857, Captain N. E. Atwood. Hydromedusarium.
Cat. No. 432, Sea Coal Bay, N. S., 1861, Anticosti Expedition. Hydromedusarium.
Cat. No. 435, Mingan Islands, 1861, Anticosti Expedition. Hydromedusarium.
Clytia bicophora AGASS.

Clytia bicophora AGASS. Cont. Nat. Hist. U. S., IV, pp. 304, 334, Pl. 27, Figs. 8, 9 (as C. cylindrica); Pl. 29, Figs. 6-9. 1862.

Under the name of Eucope campanulata, Eucope Thaumantoides, and Eucope affinis, Gegenbaur has described three species, which, to judge from the development of a similar Medusa of our coast, Clytia bicophora, are probably only different ages of the same species. The difference in shape of the ovaries in the different stages of the males and females, as seen in our Oceania, may account for the difference of form which Gegenbaur has found in the genital glands: I have been able to observe the same differences in our Clytia. The difference in the shape of the bell of his species is similar to what we find at different periods in our Clytia. When hatched from the calyce, the bell is globular (Fig. 108); the digestive cavity is a simple cylinder; the ovaries are hardly visible, as very short narrow lines on both sides of part of the upper half of the radiating tubes; there are only four tentacles. As it grows older, the actinal portion of the bell bulges out; the second set of tentacles, which were small bulbs, have now grown out, and there are traces of eight other tentacles (Fig. 109); the ovaries are also larger. At this stage the bell has the shape of a segment of a sphere, and has entirely lost its globular outline, the marginal capsules have not increased in number, there are only two between each radiating tube, just as we have them in the young Medusa at the time when they are freed from the reproductive calyce. In the next stage of the Medusa the rudimentary tentacles of Fig. 109 have developed into long flexible lashes, usually carried curled up, as in Fig. 110. In the adult of this Medusa there are no traces of any additional tentacles; though not measuring more than a quarter of an inch in diameter, yet they are very conspicuous on account of the accumulations of black pigment-cells in the bulb of the tentacles; two additional marginal capsules have also been formed, one on each side of the four primary tentacles; the ovaries are brownish purse-like

Fig. 108. Clytia bicophora, immediately after its escape from the reproductive calyce.
Fig. 109. A somewhat older Clytia bicophora.
Fig. 110. An adult Clytia bicophora, measuring one quarter of an inch.
glands, extending towards the base of the proboscis. The Hydrarium (see figure of Professor Agassiz in Vol. IV. Pl. 29, Fig. 6) grows from three quarters to an inch in height, in small tufts attached to Fucus; the calyces are strongly compressed (Fig. 111), and differ as much in their proportions as those of C. cylindrica, when seen from the broad or from the narrow side. This species may yet prove identical with the Clytia Johnstoni of Alder. According to the figure of Wright of the Medusa of Campamularia Johnstoni, it can hardly be distinguished from the Medusa of our Clytia bicophora; the Medusa of C. cylindrica figured by Hincks resembles also closely our Clytia Medusæ. The Medusa figured by Dalyell as the young of M. jimbriata, on Pl. 52, Fig. 4, Rare and Remarkable Animals of Scotland, is undoubtedly a young Medusa of C. Johnstoni, to judge from its characteristic attitude. If the figure which Gosse has given of the calyce of this same species in his "Devonshire" is correct, there can be but little question as to their specific difference; the peculiar species figured by Gosse has, however, not been noticed by other English observers. The Medusæ of Clytia cylindrica and of Clytia bicophora are so alike, immediately after their escape from the reproductive calyces, that when the development of Clytia cylindrica was first discovered, the Medusa which are here figured as Clytia bicophora (Fig. 41, Agassiz's Cont. Nat. Hist., p. 307) were mistaken for the adult of the Medusa of Clytia cylindrica. As the Clytia bicophora is very common at Nahant, the complete development of the Medusa has been traced, and the error is here corrected.

Eastport, Maine (W. Stimpson); Massachusetts Bay (Agassiz); Vineyard Sound and Naushon (L. and A. Agassiz).

Cat. No. 461, Nahant, June, 1862, A. Agassiz. Hydromedusarium.

Cat. No. 443, Nahant, June, 1864, A. Agassiz. Medusa.

Museum diagram No. 17, after L. and A. Agassiz.

Fig. 111. Sterile Hydra and reproductive calyce, seen from the broad side.
PLATYPYXIS Agass.

Clytia (Platypyxis) *cylindrica* Agass. Cont. Nat. Hist. U. S., IV. pp. 306, 354 (non Pl. 27, Figs. 8, 9); p. 357, Figs. 42–44 (non Fig. 41). 1862.

Campanularia noliformis McCr. Gyrae. Harb., p. 92, Pl. 11, Fig. 4. 1856.

The reproductive calycle is conical, smooth, strongly compressed in one direction, with a slight constriction near the free end, which flares outwards (Fig. 112); there are from three to four young Medusae developing simultaneously, though only one seems to escape at a time, and not several in close succession, as is the case with Laomedea; the Medusa nearest the upper extremity occupies more than half of the whole space; there is nothing here like the corrugations which Gosse has figured in his *C. volubilis*, or of the spur which projects beyond the point of attachment of the calycle; when seen edgeways, the calycle is strongly bent at the base (Fig. 113), and the upper edges do not flare out, as when seen from the broad side. The Hydrarium (Fig. 114) is found in shady places, near low-water-mark, and immediately beyond it; largest specimens about an eighth of an inch in height.

Charleston, S. C. (McCready); Point Judith (Leidy); Massachusetts Bay, Nahant (L. Agassiz); Buzzard’s Bay, Naushon (A. Agassiz). Cat. No. 141, Naushon, Sept. 1861, A. Agassiz. Hydromedusarium.

Fig. 112. Reproductive calycle of *P. cylindrica*, seen from the broad side.

Fig. 113. The same, seen from the narrow side.

Fig. 114. Sterile Hydra of *P. cylindrica*.
ORTHOXYIS Agass.

Massachusetts Bay (Agassiz); Nova Scotia (Anticosti Expedition).

Cat. No. 125, Nahant, April, 1856, H. J. Clark. Hydromedusarium.

Cat. No. 126, Nahant, June, 1861, A. Agassiz. Hydromedusarium.

Cat. No. 128, Nahant, August, 1861, A. Agassiz. Hydromedusarium.

Cat. No. 400, Nahant, Mass., 1862, A. Agassiz.

Cat. No. 414, Mingan Islands, N. S. Anticosti Expedition, 1861.

Museum Diagram No. 18, after L. Agassiz.

Family EUCOPIDÆ Gegenb.

Great confusion has always existed in the identifications made of the different species of Campanularians, on account of the difficulty of distinguishing in certain stages closely allied species. If, however, we are fortunate enough to examine them at the breeding season, when the characteristic reproductive calyces of the different species are in their full development, our task will be greatly facilitated; and any doubts we may still have of the identity or difference of closely allied species will be entirely removed, should we succeed in tracing the development of the young Medusa. Although we may find it impossible to distinguish, at certain stages of growth, young Medusæ, it by no means follows that these Medusæ, which have developed from Campanularians easily distinguished, are identical. (Compare the different Campanularians figured in the sequel.) Whenever we succeed in tracing the complete history of any one of our Jelly-fishes, we always find that we are able to distinguish readily closely allied species, which our previous ignorance had led us to consider as...
identica.; as, for example, the Medusæ of Eucope polygena, Eucope diaphana, Eucope pyriformis, and Eucope articulata. The strongest case we can cite is perhaps that of Syndictyon and Coryne, the adult Medusæ of which had long been distinguished by the difference of color of the sensitive bulb; but whether this was anything more than mere individual differences could not be ascertained till we became acquainted with the complete development of the former genus, which will be found given in its place in this Catalogue. Hincks, after some observations limited to two genera of Hydroids, came to the conclusion that we could have Medusæ, generically identical, developed from Hydroids generically distinct; this is so entirely opposed to anything known in the history of the development of these animals, and so totally disproved by the examples of Campanularians here described, that I believe that, when the complete history of the two Medusæ described by Hincks is fully known, we shall find we have only a case of very close affinity at one stage of their development, and that, as we become acquainted with their more advanced stages, differences will be perceptible.

The different species of Eucopidae found on our coast, of which we know the development, explain many of the contradictory statements of European writers concerning the mode of development of the different species of Eucope. It has been shown only more recently that many of the species, so closely allied as to be readily mistaken at any time, except the breeding season, were reproduced, on the one hand by Planulae, and on the other by Medusæ; and now it is found that the Medusæ produced from Hydroids which have been considered identical species, develop into very different adult forms. See, for example, the differences in the Medusæ of Laomedea geniculata, figured by Wright and Gosse; one has ovaries and the other has none, immediately after its escape from the reproductive calyx or, as in our Eucope diaphana and Eucope articulata. The Laomedea gelatinosa of Van Beneden has twenty-four tentacles and ovaries, as in our Eucope pyriformis, to which it is closely allied, while the Medusa of Laomedea gelatinosa of English writers has sixteen tentacles at first, and is an Obelia. The European Campanularians require a thorough revision in order to extricate them from the confusion existing in their synonymy, and this can only be done after a thorough acquaintance with the development of their Medusæ.

The Laomedea dichotoma of Dalyell is probably the same as the Campanularia gelatinosa of Van Beneden. The same confusion occurs in the fourth volume of Professor Agassiz's Contributions; the Eucope which is there figured as Eucope diaphana Agass., and the Campanularian of that name (Plate 34), is not the Hydroid of Eucope diaphana, as will be seen in the description of the latter. The
Eucope diaphana of the fourth volume (not that of the Memoirs of the American Academy) is probably identical with the English *Eucope geniculata* of Wright, not that of Gosse, and it may hereafter be designated as *Eucope alternata*.

EUCOPE GEGENB.

Eucope diaphana Agass.

Eucope diaphana Agass. (ex p.). Cont. Nat. Hist. U. S., IV. Pl. 33, Fig. 2. Hydrarium. 1862.

Thaumantias diaphana Möhri; in Beskriv. af Grønland, p. 96. 1857.

This is by far the most common of our Jelly-fishes; it does not grow to a large size, adult specimens not measuring more than a quarter of an inch across the disk. On escaping from the reproductive calycele, the little medusa has but twenty-four tentacles, and is constantly swimming with the disk turned inside out, as in Fig. 115; at the base of two of the tentacles (*t, t*, Fig. 116), situated on both sides of the middle tentacle, between the chymiferous tubes, are found large spherical capsules; there are no traces of ovaries to be found in this early stage, it is not till the second set of tentacles begin to develop (2, Fig. 117) that they make their appearance. Young tentacles do not possess the root-like projection at their base; this is only developed in older tentacles of more advanced Medusae. (See Fig. 120.) With advancing age the Medusa lose the habit of swimming with the proboscis uppermost, and gradually assume the usual mode of swimming of Jelly-fishes. The young Eucope of Fig. 117 develops rapidly additional tentacles, the ovaries increase in size, and we soon have an adult Medusa, with large bag-like ovaries, a

Fig. 115. A Eucope diaphana just after its escape from the reproductive calycele, seen in profile.

Fig. 116. One quarter of the disk of the same, seen from above. *t*, tentacle opposite chymiferous tube; *t*, *t*, tentacles with capsules.

Fig. 117. A more advanced Eucope, in which the second set of tentacles (2) is developing between the original tentacles (1).
short proboscis, and an extremely attenuated disk, as in Fig. 118. Fig. 119, which is a still more magnified view of a quarter of the disk, seen from above, shows the extraordinary increase of the number of tentacles, and the position of the genital organs near the circular tube. As the Medusae become older, a sort of sensitive bulb is formed at the base of the tentacles, in which a little pigment matter is accumulated (b, Fig. 120); this bulb is hardly perceptible in younger tentacles, and is totally wanting in the young Medusae. The original number of the capsules between every two chymiferous tubes is not changed as the tentacles become more numerous; in adult specimens (Fig. 119) there are only two to be found, as in the youngest Medusa, just escaped from the calycee. When examining a part of the circular tube of an Eucpe somewhat more advanced than the stage represented in Fig. 117, we find only a great increase in the sensitive bulbs and the root of the tentacles (r, Fig. 120), but we can perceive nowhere, in any of the most advanced tentacles, the least trace of additional capsules, such as are found in the two tentacles, t, t', Fig. 116, and t, Fig. 120. The capsules (c, Fig. 120) have the same shape and position they had in younger Medusae. The genital organs, at first mere swellings of the chymiferous tubes (Fig. 117), soon develop into regular pouches, which hang down on both sides of the tube; the tube also forms a sort of pocket at the point of attachment of the pouch. (a', a'', a''', Fig. 121.) This pocket is readily seen in the male (Fig. 121); its shape, when seen from above, changes considerably according to the position of the genital pouch. (a', a''', Fig. 121.) The shape of the spermaries has

Fig. 118. An adult Eucpe diaphana, seen in profile.
Fig. 119. A quarter of Fig. 118, more magnified.
Fig. 120. Magnified view of the circular tube of a young Eucpe. b, sensitive bulb; r, root of tentacle; c, capsule; t, tentacle with capsule.
Fig. 121. Spermaries; a', seen from above; a'', in profile; a''', different attitude from above.
Fig. 122. Female genital organs.
a tendency to be somewhat rectangular or bottle-shaped (Fig. 121),
while the ovaries, when distended with eggs (Fig. 122), are more
generally spherical; the number of eggs in an adult female
are not numerous, not more than twelve to fifteen; the eggs
are quite large, and have a very sharply defined germinative
vesicle. The proboscis (Fig. 123) lengthens but little in
older Medusa, almost the only change being the greater
mobility of the lips of the actinostome; the veil is totally
wanting in young Medusa, and in the adult is a very nar-
row ribbon round the circular tube, hardly extending beyond
the root of the tentacles, so that it easily escapes notice.

This Medusa is exceedingly phosphorescent, having a very white
brilliant light, which is given out most strongly at the base of the
long tentacles. These Medusa appear as early as
March, and are found as late as November. The
Hydrarian (Fig. 124) grows to but little more than
an inch in height, and resembles Laomedea genicu-
lata; but the absence of the knee at the base of the
sterile Hydra, and the long ringed branch support-
ing it, distinguish it at once from that species. The
calyce is elliptical, arching regularly towards the
centre, and tapering at the two ends (Fig. 125); from twelve to
fifteen Medusa develop in each calyce. Found at
near low-water-mark, attached to the base of Fucus
vesiculosus.

It may be that the Medusa of Laomedea geniculata
of Gosse, figured on Plate IV. of his “Devonshire,”
may prove to be the young of Thaumantias lucida of
Forbes, which is the English representative of our
Eucope diajihana. Should this be the case, the two
species are evidently distinct, and representative spe-
cies in the Acadian and Lusitanian Fauna. Is not
the Medusa fimbriata of Dalyell (Pl. 52, Figs. 6, 7)
the same as the Medusa of Laomedea geniculata, and is it not also
identical with the Thaumantias lucida of Forbes?

Massachusetts Bay, Nahant (Agassiz); Buzzard’s Bay, Naushon (A.
Agassiz).
Cat. No. 78, Nahant, July, 1861, A. Agassiz. Hydromedusarium.
Eucope alternata A. Agass.

This species was at first mistaken by Professor Agassiz for the young of Thaumantias diaphana, figured in the Memoirs of the American Academy. The development of the Hydrarium of these two closely allied forms shows that two species have been confounded.

Massachusetts Bay, Nahant (Agassiz).
Cat. No. 84, Nahant, September, 1854, H. J. Clark. Hydromedusarium.
Cat. No. 85, Nahant, May, 1862, A. Agassiz. Hydromedusarium.
Cat. No. 86, Nahant, July, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 87, Nantasket, April, 1861, H. B. Rice. Hydromedusarium.
Cat. No. 88, Nahant, L. Agassiz.
Cat. No. 394, Nahant, July, 1862, A. Agassiz. Hydromedusarium.
Cat. No. 395, Nahant, June, 1862, A. Agassiz. Hydromedusarium.

Eucope polygena A. Agass.

The only adult Medusa of the genus Eucope, of which we know the complete development, being Eucope diaphana, it is not possible at present to decide whether we have not among these closely allied Campanularians the Hydraria of several genera. There are certainly differences among the young Medusae, at the moment of escaping from the calyces, which must give them totally distinct characters when adult, to judge by what we know of the mode of development of marginal tentacles, and the increase in size of the genital organs. There is a great similarity in the young Medusae of Eucope articulata, E. pyriformis, E. alternata, and E. polygena, all these species having twenty-four hollow tentacles, and ovaries close to the base of the proboscis, at the time they escape from the reproductive calyces; while in E. diaphana and E. geniculata Gosse we have twenty-four tentacles, nearly solid, and no ovaries in the younger stages. Another type occurs in Obelia commissuralis and Laomedea gelatinosa of English authors, where the Medusa has sixteen tentacles and no ovaries; and finally there is a still different type in the Eucope fusiformis and Laomedea dicaricata of McCrady, in which we find forty-eight tentacles at the time of hatching, and long spindle-shaped genital organs along the chymiferous tubes. These are undoubtedly good structural characters upon which genera can easily be distinguished, but it would be premature to make all these divisions until we know,
from actual observations, in what manner these differences of the young Medusae are carried out in the adult. The Hydrarium and the Medusa of several species are described here under the generic name of Eucope, simply to call attention to the great structural differences found among Campanularians apparently so closely related.

Eucope polygena is remarkable for the short stems of the sterile Hydra, the stoutness of the main stem, and the great number of Medusae developed in a single reproductive calycle; the bell is flaring, with a smooth edge, and rather shallow; the reproductive calyces are elliptical, slightly wavy (Fig. 126), and somewhat bottle-shaped at the extremity. The Medusa resembles closely that figured by Professor Agassiz as *Eucope diaphana*, in Vol. IV. Pl. 34, Fig. 9, Contributions to the Natural History of the United States; the tentacles are larger in proportion to the size of the disk. This species is found growing on stems of Laminaria, in small branching tufts, of one to two inches in height.

Cat. No. 393, Nahant, June, 1862, A. Agassiz. Hydromedusarium.
Cat. No. 399, Nahant, June, 1862, A. Agassiz. Hydromedusarium.

Eucope parasitica A. Agass.

This species is closely allied to the *E. polygena*; it has, like it, short branches, composed of not more than three or four rings, supporting the sterile Hydra; the inner walls of the stems are parallel to the outer wall; the sterile Hydra go off nearly at right angles to the stem; the reproductive calyces are very graceful, terminating with a peculiar mitre-shaped top. The Medusa has twenty-four tentacles; it has thus far only been found growing on a species of Penella, parasitic on *Orthagoriscus mola*.

Massachusetts Bay, Nahant (A. Agassiz).
Cat. No. 80, Nahant, August, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 81, Nahant, August, 1856, L. Agassiz. Hydromedusarium.

Fig. 126. Magnified view of part of main stem of *E. polygena*.
Eucope pyriformis A. Agass.

This Medusa has, on its escape from the reproductive calyces, small pear-shaped ovaries placed close to the digestive cavity (Fig. 127), which is short and almost globular; there are four chymiferous tubes; the tentacles are shorter than in Obelia commisuralis, and not as slender; at the moment of hatching there are twenty-four tentacles, five between each of the chymiferous tubes (Fig. 128), and two large marginal capsules, with one granule in each, placed a little on one side (towards the circular tube) of the two tentacles adjoining the middle one between the chymiferous tubes; the lasso cells are arranged in broken rings round the tentacles. The Hydrarium (Fig. 129) is found growing in large quantities on the eel-grass; the walls of the tube run parallel to the outer envelope; there are no knees or breaks in the continuity, nor are there any swellings where the reproductive calyces are attached; the branches are wide apart, the whole tuft spreading like a bush; the bell of the hydra is short and flaring, and is attached to the main stem by a long branch, having from twelve to fifteen rings. The reproductive calyces vary greatly in shape during their growth; when small, they are almost rectangular, with rounded corners, and a slight constriction in the middle; as they become larger, they grow more pear-shaped; and in still more advanced stages the calyces assume the shape of an elongated ellipse, with a pointed cap, and three or four deep constrictions.
Eucope articulata.

This species is so closely allied to Eucope pyriformis that the Medusa can hardly be distinguished. The Medusa of Eucope articulata (Fig. 130) has more slender marginal tentacles, and the lips of the actinostome are deeply cleft and extremely movable, which is quite the contrary of what we find in young Medusa of Eucopidae. The Hydrarium is at once recognized by the extraordinary length of the ringed branch supporting the sterile Hydra, the cups of which are quite deep and narrow. The reproductive calycle (Fig. 131) resembles in shape that of Obelia commissuralis, but is in addition supported upon

Fig. 130. Quarter of the disk of Eucope articulata; magnified.
Fig. 131. Portion of a Hydrarium of Eucope articulata.
a larger pedicel, having from eight to ten rings. It is very common to see the sterile Hydra, placed as in the figure (Fig. 131), in pairs at the base of the reproductive calycle. The Hydrarium grows to about the size of the *Eucope pyriformis*, from three to four and even five inches high, and is readily mistaken for the Hydrarium of *Obelia commissionalis*. It grows in pools on rocks at low-water-mark.

Cat. No. 396, Nahant, June, 1862, A. Agassiz. Hydromedusarium.

Cat. No. 397, Nahant, June, 1862, A. Agassiz. Hydromedusarium.

Eucope? fusiformis A. Agass.

Eucope? A. Agass.; in Proc. Bost. Soc. Nat. Hist., IX, p. 91, Fig. 6.

From a Hydrarium, in which the cavity of the main stem passes from one side to the other (s, s, Fig. 132), similar in its mode of branching to that of *Eucope diaphana*, but in which the Hydræ, remarkable for their small bell, b, are attached to the main stem by short branches, not having more than three or four rings (Fig. 132), is produced a small Medusa of a sixteenth of an inch in diameter, having, when hatched, four long fusiform ovaries (Fig. 133), occupying nearly the whole length of the chymiferous tubes, and forty-eight long, slender tentacles, having well-developed rootlets, usually carried quite stiffly, with two marginal capsules between each pair of chymiferous tubes, occupying the same position as in *E. diaphana*, when it has forty-eight tentacles. The digestive cavity is quite long and movable, and differs from that of the last species by the more marked lobes of the actinostome. The different species of Eucopidae, thus far described, can easily be distinguished by the number of tentacles, the presence or absence of the ovaries, and their position when they escape from the reproductive calycles. Among the many specimens of *E. diaphana* which I had occasion to examine, I have only found two in which there were not twenty-four tentacles on hatching, and in the *Obelia commissionalis* and *E. pyriformis* the same holds good; the number of tentacles at the time of escape from the calycles being very constant.

Massachusetts Bay, Nahant (A. Agassiz).

Cat. No. 90, Nahant, July, 1861, A. Agassiz. Hydromedusarium.

Fig. 132. Hydrarium of *Eucope fusiformis*; magnified.

Fig. 133. Quarter of the disk of the Medusa of *Eucope fusiformis*; greatly magnified.
Eucope? divaricata A. Agass.

An examination, by Professor Clark, of the reproductive calyces of specimens collected at Charleston by Professor Agassiz, shows that the Meduse have forty-eight tentacles. The Hydrarium is closely related to that of the Eucope pyriformis, which, together with the present species, will probably form the basis for a new genus.

Charleston, S. C. (L. Agassiz).
Cat. No. 82, Charleston, S. C., January, 1852, L. Agassiz.

Obelia commissuralis McCr.

Obelia commissuralis Agass. Cont. Nat. Hist. U. S., IV, pp. 345, 351, Pls. 33 (non Fig. 2), 34, Figs. 10–21. 1862.
Obelia commissuralis A. Agass. Proc. Bost. Soc. Nat. Hist., IX, p. 91, Fig. 5.
Laomedea dichotoma Leidy (non Auct.). Mar. Inv. N. J. and R. I., p. 6, Pl. XI, Fig. 36. 1855.

The Obelia commissuralis of McCrady, which extends from Charleston to the coast of New England, and even as far as Grand Manan, has an exceedingly slender polypidon and branches very profusely; the branches, stretching in graceful curves on both sides of the main stem, reach their greatest length about midway, and then taper very gradually towards the upper extremity. It can at once be distinguished on account of its peculiar mode of growth; it attains from five to six and even seven inches in length. At the time when it bears reproductive calyces, it is still more easily distinguished from the allied species by the shape of the calyces; they are slender, conical, the base of the cone with its rounded edges being surmounted by a short neck (Fig. 134); they bear from ten to
twelve and even sixteen Medusæ. The young Medusa (Fig. 135), when hatched, has sixteen tentacles, four chymiferous tubes, a rather long cylindrical digestive cavity, with four labial lobes; there are no ovaries yet developed. I have not found these Medusæ in a more advanced condition, though they become free in the first weeks of July, and are found during the whole summer, as late as September, but in no case were there any ovaries developed. In confinement they do not prosper, and after a few days die, without assuming a different shape from that in which they become free. The tentacles are slender, as long as the diameter of the disk; in two of the tentacles there are large marginal capsules in a swelling on the under side; the re-entering spur of the tentacles is small. There is considerable difference between the Hydrarium of the specimens found at Charleston and those of our coast; the Charleston specimens are uniformly thinner and more slender; it remains yet to be seen whether any further specific differences can be detected in the Medusæ. If Van Beneden’s figure of the Campanularia geniculata is correct, the European and the American species of Obelia are distinct.

Absecom Beach (Leidy); Charleston (McCray); Buzzard’s Bay, Naushon (A. Agassiz); Massachusetts Bay and Grand Manan (Agassiz).

Cat. No. 67, Nahant, July, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 69, Nahant, July, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 70, Nahant, Sept. 1861, A. Agassiz. Hydromedusarium.
Cat. No. 72, Nahant, July, 1857, L. Agassiz.
Cat. No. 73, Newport, R. I., Dr. Leidy.
Cat. No. 392, Nahant, July, 1862, A. Agassiz.

Fig. 135. Quarter-disk of the Medusa of Obelia commissuralis.
LAOMEDEA.

LAOMEDEA LAMX.

Laomedea LAMX.; in Bull. Soc. Phil. 1812.

Laomedea rigida A. Agass.

This species is remarkable for its peculiar mode of growth. At first glance it would readily be mistaken for a species of Dynamena, so regular is the succession of the hydræ along the stem, and also on account of the absence of branches. The sterile and reproductive hydræ are found on the sides of the main stem, attached by a very short pedicel, and alternate so regularly on each side that its Campanularian nature is noticed only after a careful examination. The sterile hydræ resemble those of Laomedea amphora, while the reproductive calyces are identical in shape with those of Obelia commissuralis. The main stems of a cluster are closely crowded together, and attain a height of three to four inches.

Laomedea amphora Agass.

Massachusetts Bay (Agassiz); Grand Manan (Mills); Long Island Sound (Leidy, A. Agassiz).
Cat. No. 92, Nahant, July, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 93, Nahant, July, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 95, Nahant, April, 1855, H. J. Clark. Hydrarium.
Cat. No. 96, Nahant, 1857, L. Agassiz. Hydrarium.
Cat. No. 98, Naushon, Sept. 1861, A. Agassiz. Hydromedusarium.
Cat. No. 100, Newport, R. I., S. Powell. Hydromedusarium.
Cat. No. 101, Newport, R. I., Dr. J. Leidy. Hydromedusarium.
Cat. No. 102, Boston, March, 1856, H. J. Clark.
Cat. No. 114, Nahant, Sept. 1854, H. J. Clark. Young?
Cat. No. 398, Nahant, July, 1862, A. Agassiz.
Museum Diagram No. 18, after L. Agassiz.
Laomedea gigantea A. Agass.

This species of Laomedea, found growing in the brackish water of Charles River, grows to an enormous size, as much as fifteen to twenty inches. It sends off only short branches from the stout principal stem, so that in its general appearance it resembles somewhat *Sertularia cupressina*; the branches, however, are very closely arranged round the main stem; near the extremity we often find, in very large specimens, the branches spreading out somewhat fan-shaped. It can readily be distinguished from its congener, the *L. amphora*, by the shape of the calyces, which are totally different; they are elliptical, flaring but slightly towards the opening, and taper off somewhat suddenly, with a bottle-shaped extremity entirely unlike the calyces of *L. amphora*.

Boston Harbor (H. J. Clark).

Laomedea pacifica A. Agass.

This is another gigantic species closely allied to *Laomedea amphora*; the reproductive calyces are similar in both; the main stem of this species is exceedingly stout; the mode of branching resembles that of *L. gelatinosa*. Specimens of this species have been collected by Dr. Stimpson, of the North Pacific Exploring Expedition under Commodore Rodgers, in Bering's Straits, and in Avatska Bay, Kamtschatka. Gulf of Georgia, W. T. (A. Agassiz); San Francisco, Cal. (A. Agassiz).
Cat. No. 117, Gulf of Georgia, W. T., June, 1859, A. Agassiz.
Cat. No. 118, San Francisco, Cal., December, 1859, A. Agassiz.
Cat. No. 120, San Francisco, Cal., December, 1859, A. Agassiz. Hydromedusarium.
Family *ÆQUORIDÆ* Esch. (*rest. Ag.)*

RHEGMATODES A. AGASS.

Umbrella flat, chymiferous tubes numerous, digestive cavity short, with small lips scarcely fimbriated; the chymiferous tubes extend along the prolongation of the umbrella into the cavity of the bell; large tentacles, somewhat more numerous than the chymiferous tubes, very contractile. To this genus I suppose that Gosse's *Æquorea forbesiana* belongs; it is closely allied to Stomobrachium Brandt (*non* Forbes), and differs from it in not having numerous long marginal tentacles, in the greater number of radiating tubes, and the numerous short lips at the extremity of the digestive cavity. Like *Æquorea* and *Zygodactyla*, it has marginal capsules, and the peculiar spur at the base of the large tentacles. Two species of this genus have been noticed on our coast; the one in Florida, by Professor Agassiz, and the other at Naushon.

Rhegmatodes tenuis A. Agass.

This is a large species; specimens measuring between three and four inches have frequently been found. The spherosome is thick (Fig. 136) along the polar axis, bulging, in the shape of a rounded obtuse cone,

![Fig. 136. A profile view, natural size, of Rhegmatodes tenuis.](image-url)
into the interior cavity; the chymiferous tubes extending nearly to the apex, leaving but a short digestive cavity, the edges of which scarcely meet (Fig. 137), so that, when the actinostome is closed, the lips resemble a piece of catgut tied by a string close to the end; the marginal tentacles are long, generally carried extended, and when contracted twist only two or three times, and are not carried tightly curled, as in Zygodactyla; the ovaries are very narrow, and extend almost the whole length of the chymiferous tubes, from the upper margin of the digestive cavity, to about one tenth the length of the radiating tube from the circular tube; the ovaries hang down in two masses on each side of the chymiferous tubes; there is no connection between the two pouches, except near their point of attachment, where they unite again.

Younger specimens, measuring about one and a half to two inches, and not having more than sixteen to twenty-four chymiferous tubes, resemble Stomobrachium; they differ, however, in the small number of tentacles. The marginal capsules are large, elliptical; the granules placed far apart, two in each (c, Fig. 138); the tentacles taper rapidly from the base (t, Fig. 138), the walls are thin, the lasso cells scattered irregularly over the whole surface. At the base of the large tentacles we find a very prominent projection (s, Fig. 138), in the shape of a small tentacle opening into the circular tube; it is not exactly a spur, as in Lafoea; it develops only after the rudimentary tentacles, being a button scarcely to be recognized when the tentacle is already quite well formed; there are usually only rudimentary tenta-

Fig. 137. Quarter of the disk of Fig. 136, seen from the actinal side.
Fig. 138. A magnified portion of the circular canal, showing the position of the spur of the tentacles, s, s, and of the marginal capsules, c, between the tentacles, t.
cles between the chymiferous tubes, except one large tentacle in the middle of the space; there is always one marginal capsule between the adjoining tentacles. These Medusae are slow in their movements, allowing themselves to be carried along with the current, after one or two pulsations; they swim near the surface. Found at Naushon in September.

Buzzard's Bay, Naushon (A. Agassiz).
Cat. No. 278, Naushon, September, 1861, A. Agassiz. Medusa.

Rhegmatodes floridanus Agass.

A second species of this genus (Fig. 139) is found along the Florida Reefs. It resembles the young of the northern species at the time when it has from sixteen to twenty-four chymiferous tubes; the part of the gelatinous disk which projects into the interior cavity of the bell is larger, giving the spherosome a somewhat heavy look; the fringes of the actinostome are longer; the ovaries are confined to a small part of the chymiferous tubes, and do not begin at the point of junction of their upper extremity, but a short distance from it; the circular tube is large; in specimens having sixteen chymiferous tubes, there were forty marginal tentacles; in specimens having twenty, there were sixty. This species is much smaller than its northern representative, specimens having already sixteen chymiferous tubes not being more than an inch in diameter; while specimens of the northern species, which have attained the same development, measure about two inches. The marginal capsules contain two to three granules each.

Additional chymiferous tubes in the Asquoridæ are developed from the digestive cavity, as has already been shown by Kölliker, and not from the vertical tube, as is the case in the branching tubes of Willia. They are at first simple short sacs, which gradually extend in length till they become long tubes, opening into the circular tube; the chymiferous tubes and the marginal tentacles are not developed with equal regularity, in the order of their cycles; the chymiferous tubes especially are very irregularly formed, and nothing is more common

Fig. 139. Rhegmatodes floridanus, natural size.
than to find specimens having twenty or twenty-two chymiferous tubes, instead of the normal number. The same is the case in the order of development of the chymiferous tubes of Zygodactyla, and the other Aequoridæ which I have had occasion to observe. The tubes are frequently added all on one side of the spherosome, and will be nearly fully formed before they begin to be developed in the other half. The specimens observed of this species are evidently not full-grown, as the ovaries were but imperfectly developed.

Key West, Florida (L Agassiz).

STOMOBRACHIUM BRANDT.

Stomobrachium tentaculatum Agass.

† Medusa bimorpha Fab. Fauna Grönländica, No. 336. 1781.

This species is occasionally found at Nahant during July. It has twelve chymiferous tubes, a small digestive cavity, the folds of the actinostome hanging down in four lobes, placed at right angles to one another; these lobes are triangular (Fig. 140), the apex of the triangle being placed nearer the origin of the chymiferous tubes; the edges are frilled; the trend of the triangles is in the direction of four of the chymiferous tubes. Between each two of the chymiferous tubes (Fig. 141) there are from thirty to forty tentacles, in all stages of

Fig. 140. The actinostome of *Stomobrachium tentaculatum*, magnified to show the peculiar mode of carrying the folds of the digestive cavity.

Fig. 141. *Stomobrachium tentaculatum*, seen from the abactinal pole; natural size.
development; they are not capable of great expansion, and when shortened, the extremities are curled up. The ovaries, which are linear, extend along the chymiferous tubes in such a way as to leave both the actinal and abactinal extremities free (Fig. 142); the spherosome increases very gradually in thickness from the circular tube towards the abactinal pole. This species differs from the \textit{S. lenticleare} of the Falkland Islands, in having a smaller free area, longer chymiferous tubes, and more numerous tentacles; it grows from one and a half to two inches in diameter, and half an inch in height, is sluggish in its movements, is colorless, and has a gelatinous disk of considerable consistency. These Medusae are frequently found thrown up on the sandy beaches, encaised in sand in such a way as to be preserved from decomposition and loss of shape for several days. This may explain the mode in which the few fossil Medusae known have been formed.

Massachusetts Bay, Nahant (L. Agassiz).

HALOPSIS A. AGASS.

\begin{quote}
\end{quote}

The genera Berenix and Cariscochroma have been placed by Professor Agassiz among the Williadae on account of their forking chymiferous tubes. The discovery of Halopsis shows this association to be unnatural, and that most probably, when the genera Berenix and Cariscochroma are better known, they will be associated with Halopsis into a distinct family, the Beriniciidae of Eschscholtz. Whatever may be the result, it is at least highly probable that their closer relations are with the \textit{Æquoridae}, and not with the Tubularian family of the Williadae.

Halopsis ocellata A. AGASS.

\begin{quote}
\end{quote}

The genus Halopsis differs from the other \textit{Æquoridae} by the presence of large compound eyes, as in Tiaropsis, from three to six between every two of the chymiferous tubes. There are likewise long tentacular cirri; the flatness of the disk, the large number of tentacles, the nature of the digestive cavity and of the genital organs, place this genus among the \textit{Æquoridae}. Two species are found on our coast.
which are so closely allied that, were not the complete history of their earlier stages known, they would readily have been mistaken for different ages of the same species.

The first species, *Halopsis ocellata*, would at first glance be taken for a Stomobrachion; on examination we find that the chymiferous tubes take their origin in clusters of three to five (in adults), radiating, like the spokes of a fan (Fig. 143), from a large cross-shaped cavity (Fig. 144), from which hangs down a short digestive cavity, terminating in four lips. When seen in profile, the disk is quite flat, regularly arched, the genital organs extend nearly to the circular tube (Fig. 145), occupying almost the whole length of the chymiferous tubes. The tentacles are very numerous, and capable of great expansion and contraction (Figs. 143, 145); there are as many tentacular cirri as tentacles (c, Fig. 146); they are long, slender, of uniform diameter; the main tentacles (t, Fig. 146) bulge out prominently immediately at the circular tube, tapering very rapidly. The compound eyes are large (e, Fig. 146); the granules in them are arranged in two rows, from six to seven in each row (Fig. 147); the structure of these compound eyes is similar to those of *Tiaropsis*. These Medusae are exceedingly sluggish in their movements; they are colorless, the genital organs having a slight grayish tinge at the time of spawning. Found at Nahant, from July to September, quite commonly. In young specimens, measuring not more than an inch in diameter, there are only four chymiferous tubes (Fig. 148), uniting in the form of a cross; there are no signs of genital organs; the shape of the disk is somewhat more hemispherical than in the

Fig. 143. Portion of the disk of *Halopsis ocellata*, seen from the abactinal pole, somewhat reduced.

Fig. 144. Cavity from which the chymiferous tubes radiate. *d*, opening of actinostome; *c*, chymiferous tube; *b*, connecting fold between the point of attachment of two chymiferous tubes; *t*, lips of actinostome.

Fig. 145. Profile of *Halopsis ocellata*; natural size.
adult. Specimens measuring an inch and a half in diameter have as many as twelve chymiferous tubes, the cavity from which the tubes originate being irregularly shaped; it is not till the Medusa measures from two to two and a half inches in diameter, that it takes the regular star-shaped form of Fig. 143; it is then also that the genital organs first appear, like threads on each side of the tubes. Additional chymiferous tubes are formed quite irregularly as diverticula sent off from the digestive pouch, as in other Æquoridae. It is quite a common thing in this species to have two actinostomes, in specimens where the central cavity is very elongated and irregular in outline, a beginning, perhaps, of a transverse fission similar to that observed by Kölliker in Stomobrachium, but which I have never noticed in our species. In a still younger Medusa (Fig. 149), not measuring more than a fifth of an inch in height, and which I suppose to be the young of this species (it cannot be the young of Tiaropsis diademata; see the drawings of the young of that species), we find already four eyes between two of the chymiferous tubes (Fig. 150), but having only two to three granules in each, one large tentacle at the base of the chymiferous tubes, one in the middle, and rudimentary tentacles of the third set in the intermediate spaces; on each side of these rudimentary tentacles are long cirri; there are no ovaries. It is interesting to see that among the Æquoridae, the flattest of our Medusæ, the young have a deep bell (Fig. 149), which becomes gradually shallower, as in the other Campanularians. The deep bell of the young Halopsis is totally different from the other form of young Æquorea figured hereafter, which resembles

Fig. 146. Magnified part of circular tube. c, tentacular cirri; e, compound eye; f, main tentacles.
Fig. 147. Magnified view of one of the eyes, to show arrangement of granules.
Fig. 148. Young Halopsis ocellata, natural size.
Fig. 149. Young Halopsis ocellata, a fifth of an inch in height.
Fig. 150. Magnified portion of circular tube of Fig. 149. c, c, c, cirri; at base of each is placed an eye.
more a Eucope. This may eventually show us two modes of development among the Aequoridae into forms, forming groups corresponding to those of the Oceanidae and Eucopeida as here limited, in one of which the young Medusa has a deep bell and few tentacles, as in Clytia and Oceania, while in the other group they have, when hatched from the reproductive calycels, a flat disk and many tentacles, as in Eucope and Obelia.

Massachusetts Bay, Nahant (A. Agassiz).
Cat. No. 364, Nahant, August, 1862, A. Agassiz. Medusa.
Cat. No. 375, Nahant, 1863, A. Agassiz. Medusa.

Halopsis cruciata A. Agass.

During the early part of the summer there is frequently found a Medusa, at first supposed to be the young of *Halopsis ocellata*; a comparison of the size, the character of the genital organs, and the number of tentacles, shows this to be impossible. *H. cruciata* never grows to more than one and a half to two inches in diameter. The tentacles are much less numerous (Fig. 151), the genital organs are lobed pouches, hanging down in folds from the chymiferous tubes; there are only three compound eyes between every two of the chymiferous tubes; these three eyes are already present in the youngest Medusae observed, which measure hardly half an inch in diameter, and in which the genital organs are already well developed, while in the young of *H. ocellata*, in specimens measuring nearly two inches, and having as many as twelve chymiferous tubes, we find no trace of them. The bell of these young Medusae is very high; the eyes differ from those of *H. ocellata*, having only four or five granules arranged in a single row; the tentacular cirri and the large tentacles are essentially the same in both species; the spermaries of the males are quite slender and more linear, compared to the heavily filled, convoluted genital pouches of the females. The genital organs are of a light pink color, as well as the bell.

Fig. 151. A profile view, somewhat magnified, of *Halopsis cruciata*.
Fig. 152. A natural attitude of the same species; both females.
May not the *T. gibbosa* of Forbes be a young Halopsis? They resemble the young of this species; also *T. globosa*, and perhaps *T. pilosella*. We have here again one of those ever-returning questions of the generic identity or difference of species, showing great structural differences, such as we find between these two species; the discovery of the Hydrarium will settle the point. *H. cruciata*, with its high bell (Figs. 151, 152), its four chymiferous tubes, the nature of its compound eyes, and its habits, would seem to be associated with *Tiaropsis*, among the Oceanidae; while the tentacular cirri and the arrangement of the compound eyes place it in the closest relationship to *H. ocellata*.

Massachusetts Bay, Nahant (A. Agassiz).
Cat. No. 374, Nahant, 1863, A. Agassiz. Medusæ.
Cat. No. 379, Nahant, June, 1862, A. Agassiz. Medusæ.
Cat. No. 445, Nahant, June, 1864, A. Agassiz. Medusæ.

ZYGODACTYLA BRANDT.

Zygodactyla groenlandica Agass.

Medusa æquorea Fab. Fauna Groenlandica. No. 357. 1780.
Æquorea globularia Mörch.; in Beitr. af Grönland, p. 96. 1857.
Æquorea groenlandica Less. Zooph. Acad., p. 313. 1843.

This species, of which a short description was given by Professor Agassiz in the Proceedings of the Boston Society of Natural History for 1850, who supposed it to be an undescribed species, is one of the largest of our naked-eyed Medusæ. It is not uncommon to find specimens measuring as much as fifteen inches in diameter when fully extended. There are in full-grown specimens from eighty to a hundred chymiferous tubes (Fig. 153), with three and even four long retractile marginal tentacles between every two chymiferous tubes; the pendent membrane, which forms the digestive cavity, is very contractile, having a circular opening, with short lips and fimbriated edges, corresponding to the chymiferous tubes, which appear to be hardly long enough, when expanded (Fig. 153), to close up the edges, while at other times the lips of the actinostome hang down far below the level of the circular canal, like a sheaf (Fig. 154), and at other times the lips hang down loosely from what seems a small opening, or flare out so as to measure five or six times the diameter of their base. The chymiferous tubes extend a short distance down
the bulging part of the spherosome, the free space left in the centre having a radius of about one third that of the spherosome itself. The lips of the actinostome are formed by the folding of the membrane of the digestive cavity along the direction of the radius; as the membrane becomes more and more fimbriated, the fold becomes deeper and deeper, and projects beyond the general outline, like an exceedingly delicate frill. The tentacles at the base are swollen, taper very suddenly, are hollow (Fig. 155), the walls of the tentacles are thin, and the lasso cells are arranged irregularly over the whole surface in small clusters. At the base of each of the large tentacles there is a small hollow spur (s, Fig. 155) projecting inward, the walls of which are thick, and made up of large cells; the rudimentary tentacles are swollen at the extremity; and the spur is not developed until the lash of the tentacle becomes apparent; the marginal capsules are large, ellipsoid, with two large granules in each. In young specimens of *Zygodactyla*, not having more than forty large chymiferous tubes reaching to the margin, we find the other tubes but slightly developed, two or three sometimes between each of the larger tubes extending from the upper edge of the digestive cavity to various distances from it;
these rudimentary tubes are mere threads, running a short distance, and then suddenly terminating, or tapering gradually to a point. In the latter part of June, or early in July, the Zygodactyla are all in this condition, while later in the season, in August and the latter part of September, they attain their full size, all the chymiferous tubes being about equally developed. The lips of the actinostome are so readily movable that the outline of its edge will assume the most varied shapes, the opening being either concentric and perfectly circular, or else thrown entirely to one side, or assuming a pear-shaped form, closing at another time like the actinostome of an Actinia, and then suddenly spreading into a pentagonal opening; or the membrane of the digestive cavity is expanded to its fullest capacity, extending far below the circular tube, and leaving but a very small elliptical actinostome, from which a sheaf of long, slender, highly fimbriated, lanceolate lips are suspended.

Notwithstanding the facility with which this species is kept alive, I have never succeeded in raising the eggs, as is so easily done with Timia and Melicertum, and can therefore add nothing to the observations of Wright on the Hydrarium of Αquorea vitrina.

Among the numerous young Eucopidae, daily examined, are frequently found exceedingly small Medusae, not larger than the head of a pin, which I suppose to be the young of Zygodactyla. They resemble the Eucopidae, but differ in having rather more slender tentacles, and a very peculiar gelatinous projection of the disk, at the base of which are situated four round genital organs (Fig. 156); there are four chymiferous tubes opening into a large cavity, leading into a slightly pendent stomach, exactly as would be the case in a Zygodactyla, if we were to reduce the chymiferous tubes to four, and make the genital organs round. The youngest Medusae have already twenty-four tentacles, and the next size, scarcely larger, forty-eight; from this large number of tentacles, as well as the peculiar projection of the gelatinous disk, and the large cavity from which the chymiferous tubes take their origin, I have but little doubt that they are the young of Αquoridæ, probably of our Zygodactyla. The small size of these Medusæ, coupled with their habit of living at the bottom, till late in the fall, when they make their appearance as full-grown Medusæ, will readily account for their having escaped our notice thus far. These young Αquoridæ are quite common early in June; their further development could not be traced, as they do not thrive in confinement.
Greenland (Fabricius); Maine, and Massachusetts Bay (L. Agassiz); Naushon (A. Agassiz).
Cat. No. 277, Naushon, September, 1861, Alex. Agassiz. Medusa.

Zygodactyla crassa A. Agass.

This species, which grows to almost as large a size as Zygodactyla groenlandica, can be recognized at first glance by the small number and great size of the genital organs; there are not more than thirty-two chymiferous tubes (Fig. 158) in a Medusa measuring ten inches in diameter, while in a specimen of Z. groenlandica of the same size we should find at least eighty to ninety; the ovaries have an extraordinary development, and bulge out at the time of spawning fully as much as the ovaries of Melicertum, hanging very much in the same manner from the chymiferous tubes (Fig. 157); the radius of the digestive cavity is larger; the number of lips of the actinostome corresponds to that of the radiating tubes (Fig. 158); the digestive cavity is far less capable of expansion and contraction than in Z. groenlandica; the marginal tentacles are much heavier and more massive; the color of the base is slightly greenish-blue, as well as the genital organs; the latter have a rather more yellowish hue. Found at

Fig. 157. Profile view of Zygodactyla crassa, somewhat reduced in size.
Nahant, in company with the *Z. groenlandica*. The color of the males is somewhat more pinkish than that of the females.

Massachusetts Bay, Nahant (A. Agassiz).

Zygodactyla cyanea Agass.

This species is of a light-blue color; can readily be distinguished from *Z. groenlandica* by the great thickness of the spherosome, and the large digestive cavity; the actinostome is bordered by a number of very small and finely fimbriated lips (Fig. 159); the chymiferous tubes do not curve down and extend along the projection of the spherosome in the inner cavity of the bell; at their highest point they empty into the digestive cavity, the radius of which is more than one half that of the spherosome itself, leaving but a short space between the abactinal edge of the digestive cavity and the circular tube; the chymiferous tubes are numerous, ninety to a hundred, usually placed opposite a long and exceedingly contractile tentacle; these are generally

Fig. 158. Quarter of the disk of *Z. crassa*.
Fig. 159. Portion of the disk of *Zygodactyla cyanea*, from the abactinal pole.
CREMATOSTOMA.

Zygodactyla cœrulescens Br.

Zygodactyla cœrulescens Br.; in Mém. Acad. St. Petersb., p. 360, Pl. 5. 1838.

Entrance of Straits of Fuca (A. Agassiz).

CREMATOSTOMA A. Agass.

The genera of Aequoridæ found on the Pacific coast are either identical with those of our coast, or have representatives which give to the members of that family found on the two sides of the continent a striking similarity. Stomobrachium, Zygodactyla, and Aequorea are found both in the Atlantic and Pacific; we have Rhegmatodes, which has as yet no representative on the Pacific coast of North America, while Crematostoma has not been found on the Atlantic side.

This genus recalls Zygodactyla, in having a large digestive cavity; it is, however, much less contractile than in that genus, and hangs always far below the level of the circular tube. The actinostome, as in Zygodactyla, is surrounded by a number of narrow, lanceolate, fimbriated lips, one for each chymiferous tube, which are from sixty to eighty in number.

Crematostoma flavæ A. Agass.

The lower part of the digestive cavity, immediately above the actinostome, is alone capable of considerable contraction, the digestive cavity hanging down like a large cylindrical sac, with numerous longitudinal folds extending from the origin of the chymiferous tubes along the whole length of the sac to the actinostome. The chymiferous tubes are broad, extending a short distance along the projection of the spherosome into the cavity of the bell. The ovaries extend the whole
length of the chymiferous tubes, they are linear (Fig. 159); opposite each of the chymiferous tubes there is one large tentacle, very contractile, with a slight swelling at the base; between the chymiferous tubes, one smaller tentacle and marginal capsules; the chymiferous tubes, near the base of the digestive cavity, anastomose frequently; the section of the spherosome resembles that of Zygodiactyla more than any other genus of the family. The disk increases rapidly from the circular tube, and remains then of the same thickness to the base of the projection of the disk in the inner cavity; here the outline of the inner bell suddenly curves down, and projects like a spheri-cal segment, nearly hemispherical, in the cavity of the bell, the outline of the outer bell having a slight constriction at this point, and from there curving gradually to the abactinal pole. From three to four inches in diameter; specimens one and a half inches high, measured three and a half inches in diameter.

Gulf of Georgia, W. T. (A. Agassiz).
Cat. No. 123, Gulf of Georgia, W. T., June, 1859, A. Agassiz. Medusa.

ÆQUOREA Pér. et Les.

Æquorea ciliata Esch.
Æquorea ciliata Esch. Syst. der Acal., p. 109. Pl. 9, Fig. 1. 1829.

Northwest Coast of North America, Lat. 41° to 51° N. (Eschscholtz); Straits of Fuca (A. Agassiz).

Fig. 159*. Crematostoma flava A. Agass.
Eequorea albida A. Agass.

The genus Eequorea, as generally received, includes species which have been separated from it, under the name of Zygodaetlyla, by Brandt, and to which the Eequorea vitrina of Gosse also belongs. The long pendent membrane of the digestive cavity, with the actinostome surrounded with numerous lanceolate and strongly fimbriated folds, at once distinguishes this genus from Rhegmatodes, which includes such species as Rhegmatodes tenuis and floridanus, and the Eequorea forbesiana of Gosse, in which the chymiferous tubes are not numerous, the tentacles few in number, and the digestive cavity not capable of extension as in Zygodaetlyla, the lips of the actinostome being short and simple folds. Eequorea is distinguished from both these genera by having a greater number of chymiferous tubes, the ovaries extending for their whole length, from the circular tube to the membrane of the digestive cavity. The tentacles are numerous, the spurs at the base of the large tentacles being more closely connected with them than in the other genera of this family. The actinostome is a simple opening, without appendages such as we find in Zygodaetlyla, Stomobrachium, and others, having only slight indentations formed along its margin, giving the opening a somewhat polygonal shape (Fig. 160); and when entirely closed, the edges of the actinostome meet, forming a slight button. The spherosome has a slight indentation near the abactinal pole, the bell diminishing very gradually in thickness towards the circular tube (Fig. 161); the gelatinous disk hardly projects into the cavity of the bell; the chymiferous tubes run into the digestive cavity at their highest point, the radius of the digestive cavity being about one third that of the spherosome; the chymiferous tubes are narrow, there are three or four marginal tentacles between every two chymiferous tubes, and two or three
marginal capsules, two for every large tentacle, between the tubes, in each of which there are from three to four granules arranged in a cluster in the centre; the capsules are perfectly spherical (c, Fig. 162); the walls of the tentacles taper very gradually from the circular tube, the swelling has but little prominence, and the pigment cells at their base are not numerous, scarcely coloring it; the lasso cells are arranged in small knobs, scattered, at some distance from one another, all over the surface of the tentacles; the spur of the tentacles (s, Fig. 162) is placed directly opposite the large tentacle on the other side of the circular tube; the walls of this spur are thick, and its hollow space appears like a small elliptical opening when seen from above; the undeveloped tentacles are solid conical protuberances, from which the cavity of the tentacle is little by little hollowed out; the tentacles are usually carried tightly twisted like a corkscrew; when in motion, the tentacles are fully expanded, then bent at right angles and drawn inside the veil and slowly thrown out, the tentacles almost closing the opening of the cavity of the bell, giving these Medusæ the appearance of having numerous long tentacles (Fig. 161) arising from a small circular tube, the chymiferous tubes and the tentacles in their prolongation making almost a complete sphere. Specimens from one to two and a half inches in diameter were taken at Naushon during September.

Buzzard's Bay, Naushon (A. Agassiz).

Fig. 162. Magnified view of part of the marginal tube. c, capsule; s, spur of the tentacles, t.
Family GERYONOPSIDÆ Agass.

Geryonidae Esch. (p. p.). Syst. der Acet., p. 86. 1829.

EIRENE Esch.

Eirene Esch. Syst. der Acet., p. 94. 1829.

Eirene gibbosa Agass.

Charleston Harbor (McCready).

Eirene caerulea Agass.

The spherosome increases rapidly in thickness from the circular tube to the peduncle, which tapers quickly, and when fully expanded does not reach much beyond the level of the veil (Fig. 163); the ovaries are linear, slightly convoluted, do not extend the whole length of the chymiferous tubes, but begin about halfway up, between the circular tube and the base of the peduncle, extending close to the digestive sac, which is terminated by four short lips with slightly fimbriated edges; the outline of the spherosome is hemispherical; the tentacles are numerous, in the largest specimens measuring an inch and a quarter across the disk, and an inch in height; there were as many as thirty to thirty-five short tentacles between every two chymiferous tubes; the gelatinous disk has a slight tinge of blue. Found at Key West and the Tortugas in April.

Florida, Key West (L. Agassiz).

Fig. 163. *Eirene caerulea*.
Tima formosa Agass.

Spherosome greater than a hemisphere, with edges slightly receding from the polar axis, near the circular tube. The disk increases in thickness very gradually to the bend of the chymiferous tubes (Fig. 164), where the gelatinous disk extends in a broad cone, slowly diminishing in diameter, till it reaches somewhat beyond the level of the veil. This peduncle is contractile, extending at times the diameter of the inner cavity of the bell beyond the circular tube; the sexual organs extend from the circular tube (Fig. 165) the whole length of the chymiferous tubes, and nearly to the end of the peduncle; the four chymiferous tubes open into a short digestive cavity (e, Fig. 166); the actinostome is surrounded by four very slender, long, lanceolate, fimbriated lips. (l, Fig. 166.) There are thirty-two long contractile tentacles, seven between every two chymiferous tubes, and one opposite each tube; the ovaries consist of series of little pouches hanging down on
both sides of the chymiferous tubes (Fig. 167); the tentacles have a very prominent pouch, strongly compressed laterally, at the point of junction with the marginal tubes; between the larger principal tentacles (t, Fig. 168) we find a number of small pouches, rudimentary tentacles (t', Fig. 168), which are never developed fully, yet appear to be included in the regular cycle of tentacles, to judge from the number we find at different stages of growth; between the smaller tentacles we find marginal capsules (c, Fig. 168), with four to five granules arranged near the periphery; the circular tube is large and very prominent; the spherosome is perfectly colorless, but the ovaries, as well as the base of the tentacles, are of a beautiful milky white, which makes these Jelly-fishes a very prominent object in the water; they do not come near the surface, but remain usually four or five feet below; they are found during the whole year, adult specimens having been taken in June, October, December, and March. The young Medusa (Fig. 169) differs widely from the adult; there are no ovaries in specimens measuring more than an inch in diameter; the chymiferous tubes extend along the short proboscis (t, Fig. 170), opening into a digestive cavity, d, which terminates with four rather simple lips, more like the actinostome of a Lafoea; there are but three large marginal tentacles between adjoining chymiferous tubes, and no signs of any further cycles of tentacles in the specimen figured here; marginal capsules were likewise not yet developed. The young Medusa of Tima is another case to be added to Melicertum, Lafoea, and Atractylis, where there are no marginal

Fig. 167. Portion of the ovary. f, f, lobes running on either side of the chymiferous tubes.
Fig. 168. A magnified portion of the circular tube. t, t, principal tentacles; t', rudimentary tentacles; c, marginal capsules.
Fig. 169. Young Tima formosa, natural size.
Fig. 170. Digestive cavity of Fig. 169. t, termination of chymiferous tubes; d, digestive cavity.
capsules along the circular tube, and yet these Medusæ have all been traced to a Campanularian-like Hydrarium. Tima differs from the other genera just mentioned, in developing eventually these marginal capsules, which are always wanting, at least in the shape of capsules with limestone concretions, in the above-mentioned genera. See the magnified portion of the circular tube of Tima (Fig. 168), and compare this, crowded with marginal capsules, to the circular tube of Melicertum and Lactea. Having kept in confinement males and females of this species, I succeeded in raising from the eggs the Planula, and ultimately the Hydrarium, as in the case of Melicertum, where further details will be found concerning the mode of development of the Planula into the Hydrarium; as this is identical in both, I shall only describe the Planula and Hydrarium as far as they differ from those of the Melicertum.

The Planula is more pear-shaped (p, Fig. 171) than that of the Melicertum, and takes a far greater elongation before attaching itself (p', Fig. 171). The Hydrarium is also more slender, the cup is more distinct, the tentacles are quite long and slender, and are connected at the base by a web (Fig. 172); this seems to be a mere embryonic feature, as I have noticed the same web in several young Campanularians. The Hydrarium here figured attained its present features at the end of six months. The communities are very small tufts, barely perceptible to the naked eye; they appeared like a few slender threads on the side of the glass vessel in which the Planula was raised; I did not succeed in raising the Hydrarium to observe its further development.

Massachusetts Bay (L. Agassiz).
Cat. No. 372, Nahant, September, 1863, A. Agassiz. Medusa.
Museum Diagram No. 17, after A. Agassiz.

Fig. 171. p, young planula; p', planula immediately before attaching itself.
Fig. 172. Single Hydra of the tuft of a Tima Hydrarium, greatly magnified.
EUTIMA McCR.

Eutima mira McCR.

Charleston, S. C. (McCrady).

Eutima variabilis McCR.

Charleston, S. C. (McCrady).

Eutima limpida A. AGASS.

This species (Fig. 173) resembles closely the _Eutima mira_ of Charleston Harbor; like it, it has only four long tentacles (with one short cirrus on each side of the tentacle, Fig. 176), one opposite each chymiferous tube, two large marginal capsules between each two ten-
The digestive cavity (c, Fig. 175) is very short; it is situated at the extremity of the narrow flexible sac, extending from g to c, Fig. 175, and terminates in a flat quadrangular disk (d, Fig. 175), which is sometimes folded in the shape of forceps, although generally kept stretched out flat, like the sucking disk of a leech; in the centre of this disk we find the actinostome, which is a very small rosette-shaped opening, with four loops. The genital glands (o, Fig. 175) are narrow; they rise almost from the circular tube, and follow the chymiferous tubes along the gelatinous prolongation of the disk, nearly to the level of the veil. (o', Fig. 175.) The tentacles are hollow and have no swelling at the base (Fig. 176), the walls being thicker and tapering gradually to the extremity. In the marginal capsules (Fig. 177), which are so large that they can be seen with the naked eye, there are from twelve to thirteen granules arranged in a circle near the periphery of the capsule. The rudimentary tentacles (t, Fig. 178) are mere triangular expansions.

Fig. 175. Magnified view of the proboscis and genital organs. g, terminal point of gelatinous prolongation of the disk; o, part of genital organs extending along the bell; o', terminal point of genital organs along the gelatinous prolongation of the bell; c, digestive cavity; d, actinostome in its usual mode of expansion.

Fig. 176. Magnified portion of the circular canal, with a primary tentacle and tentacular cirri, to show the rudimentary tentacles between the chymiferous tubes and the capsules, c.

Fig. 177. Magnified marginal capsule, showing the circular arrangement of the granules.

Fig. 178. Still more magnified view of the rudimentary tentacles. c, circular tube; t, rudimentary tentacles.
of the circular tube, c. The bell widens very rapidly towards the lower floor, and is perfectly transparent; the ovaries, as well as the tentacles and the proboscis, are colorless; the diameter of the bell is nearly two inches, and the polar diameter about half an inch; the proboscis is usually carried as in Fig. 173, and, as the digestive cavity is capable of but slight contraction, it bears usually the proportions of that figure to the diameter of the bell. Found in Buzzard's Bay during September.

Buzzard's Bay, Naushon (A. Agassiz).

Eutima pyramidalis Agass.

The spherosome is hemispherical, and more heavy than in either _Eutima limpidu_ or _E. mira_; the proboscis is shorter, and tapers rapidly; the tentacles are short; the oral leaflets are rounded and separated by an indentation from one another, the edge of the leaflets being finely scalloped; the digestive cavity is short.

Florida, Key West (L. Agassiz).

Family POLYORCHIDÆ A. Agass.

This family is characterized by the peculiar structure of the chymiferous tubes, which, sending off diverticula at right angles to the main tube, give these Medusae a very peculiar aspect. With the exception of Polyorchis, we know of only one other genus, _Olindias_ Fr. Müll., which has the same structure of the chymiferous tubes. Müller, at the close of his description of _O. sambaquiensis_, says it is characteristic of the uncertainty which still exists in the classification of Acalephae, that the attempt to assign to this Medusa its position in the systems of Eschscholtz, Forbes, or Lütken, places them in families with which they have no affinities, and we cannot even assign them to any of the families of Gegenbaur; the only genus to which it seems to have any relation is _Melicertum_ Oken. This suggestion of Müller, as to the affinities of his genus Olindias, is fully borne out by the examination of the _Melicertum penicillatum_ of Eschscholtz, which has, like it, peculiar chymiferous tubes, and also the discovery of Gonionemus, a genus having the general appearance of Olindias without the ramifying chymiferous tubes. Gonionemus shows us the close relation that exists between these genera and Melicertum, although the differences existing between Olindias and Polyorchis on one side, and Gonionemus and Melicertum on the other, are such as to form very natural families.
POLYORCHIS A. AGASS.

Polyorchis penicillata A. Agass.

Melicertum penicillatum Esch. Syst. der Acal., p. 105, PI. 8, Fig. 4. 1829.
Aglaura penicillata Bl. Man. d'Actinol., PI. 33, Fig. 4.

This strange Jelly-fish I first found in great numbers, while becalmed at the entrance of the Straits of San Juan de Fuca, in October, in company with large numbers of a Medusa which I suppose to be the Mesonema (Zygodactyla) cerulescens found by Brandt in the latitude of San Francisco, and which I had afterwards occasion to observe again near Punta de los Reyes, about twenty miles northwest of San Francisco. It is also quite common in the harbor of San Francisco during the winter months. It combines the characters of several families, has the long, pendent digestive cavity of the Thaumantiadae (Fig. 179); the ovaries hang independently, four in number to each chymiferous tube (Fig. 180), near the base of the digestive cavity, as in the Trachynemidae. But what is very peculiar is the structure of the chymiferous tubes; instead of being simple or forking tubes, as we generally find in the Hydroids, they remind us of the structure of the chymiferous tubes in Idyia, sending off short shoots into the gelatinous disk at right angles, alternat-

Fig. 179. A profile view, somewhat magnified, of Polyorchis penicillata.
Fig. 180. Ovaries of one of the chymiferous tubes.
ing with each other (Fig. 179); this gives to these Medusae a very peculiar appearance, differing entirely from any other family of Hydrodoids, and for which I would propose the name of Polyorchide. The polar axis is the longest; the spherosome has its greatest width at the level of the ovaries (Fig. 179); from this point it turns rapidly towards the abactinal pole, while it scarcely tapers towards the actinostome, giving the spherosome the appearance of a cylinder with a rounded top; the thickness of the spherosome is very uniform, projecting but slightly in the inner cavity of the bell (Fig. 181), at the point of attachment of the digestive cavity; the digestive cavity is long, slender, and exceedingly movable, terminating in four lobes (Fig. 182), and extending to the opening of the veil; there are four genital organs of unequal length, attached at the highest point (Fig. 180) of the four chymiferous tubes, hanging freely in the cavity of the bell; they are arranged one behind the other, along the upper extremity of the chymiferous tubes, the longest equalling half the height of the inner bell. The diverticula from the main tubes commence immediately at the base of the ovaries, where they are quite small; they gradually increase in size for about half the length of the chymiferous tubes, whence they continue nearly of the same size to the circular tube; the offshoots are somewhat more numerous in the lower part of the tube. (Fig. 179.) The tentacles are very contractile (compare Figs. 183 and 179); when drawn up, they are scarcely half the length of the spherosome; they project horizontally from the chymiferous tubes for a short distance, and from the point where a conical dark-purple ocellus is placed are then bent at right angles to their former direction; it is only the lower part of the tentacle which is capable of expansion; when the tentacles are fully expanded, they extend three or four times the length of the bell. The genital sacs, the chymiferous tubes, the tentacles, and the digestive cavity, are of a

Fig. 181. Section of the bell.
Fig. 182. Part of the disk of Fig. 179, seen from the abactinal pole.
Fig. 183. Two of the marginal tentacles in a contracted state.
light reddish-brown color; the bell has a yellowish tint. The motions of this Medusa are rather sluggish; they are very conspicuous in the water on account of their wreath of dark-purple ocelli; they are gregarious, move near the top of the water, the bell almost striking the surface, and when disturbed return to the surface immediately. There are thirty-six tentacles, eight between each of the four chymiferous tubes, and one at the base of each tube; the four lobes of the actinostome are long, and flare out considerably beyond the diameter of the digestive cavity, which is of a uniform length, widening very gradually to the point of junction with the chymiferous tubes; the main chymiferous tubes are slightly winding; the lower knotty, club-shaped diverticula have a tendency to bend downwards towards the circular tube; the veil is narrow; the ovaries are one third the length of the spherosome. These Jelly-fishes attain a height of nearly two inches; but smaller specimens, measuring only an inch in height, showed, except the size, no differences; the character of the marginal capsules of this Medusa, if there are any, has not been examined.

This is undoubtedly the Melicertum penicillatum of Eschscholtz, though from his description and figures the characteristic features of this Medusa are not very evident.

California (Eschscholtz); Gulf of Georgia (A. Agassiz); San Francisco, Cal. (A. Agassiz).

Family LAODICEIDÆ Agass. (emend. A. Agass.)

The family name of Laodicidae given to the Thaumantiadæ Gegenb. by Professor Agassiz, may, in its turn, yield to that of Lafoeidae, should it be found that the Hydrarium of Laodicæ Less. is invariably a Lafoe. The name *Laodicæ* is here retained, as the Medusæ, associated under that generic name, present differences which, when the Hydrarium becomes known, may warrant our retaining the name *Laodicæ* for some of them, and thus the genus which has given the family name may still be retained, even if for the present we substitute for some of the species of Laodicæ the older name of Lafoe of Lamouroux. The Laodicidae are here extended to include the Melicertidae, which certainly are closely related, and can hardly be divided into distinct families, if we are to judge from the young Medusæ and the Hydrarium of these genera.
The Medusa of Lafoea described in the Contributions of Professor Agassiz, Vol. IV. p. 351, was referred by him to Lafoea cornuta of Lamouroux. Having, however, since that time found at Nahant a young Medusa closely allied to the one to be here described, I am inclined to doubt this identification, even though I have not observed its Hydrarium, as I have done for the Lafoea of Naushon; the absence of pigment-spots at the base of the tentacles, and the different number of tentacles at the time when the Medusae are liberated from the reproductive calyces, easily distinguishes these two Medusae. The Lafoean Medusa found at Naushon was also followed in its more advanced stages, till we could connect it with the young of the Medusa before described as Laodicea calcarata.

The largest specimens observed were an inch in diameter; the bell is perfectly transparent (Fig. 184), and, were it not for the four dark-yellowish ovaries, it would readily escape notice; they hang down like short curtains in close folds, extending almost the whole length of the chymiferous tubes, from the digestive cavity where they run into the folds of its base (Fig. 185), to the circular tube; the digestive cavity is short, and the actinostome divides into four thin, convoluted folds, projecting beyond the edge of the digestive cavity to twice its diam-

Fig. 184. Adult Medusa of Lafoea calcarata; magnified.
the chymiferous tubes are narrow; the tentacles have their greatest diameter directly at the circular tube; they are, however, unequally developed, and vary greatly in character. The large tentacles are very contractile; near the base they have a swelling which consists of small granular cells, with a spot of dark-violet pigment-cells on its lower surface (Fig. 187); on the opposite side of this bulb we find a spur-like projection (see t, Fig. 187), consisting of large, transparent, polygonal cells; from this point the tentacle tapers very gradually, and is also made up of larger cells than the basal swelling; these cells are arranged in two rows, and through them runs a thin tube to the tip of the tentacle; the lasso cells are numerous, and run in a zigzag manner all over the surface of the large tentacles. When new tentacles are formed in the adult Medusa, it is the spur which is first developed, and afterwards the swelling with the pigment-cells; the tentacle has then a triangular appearance, and is turned in the opposite direction from the spur; from this time it lengthens very rapidly, though many of the tentacles are never fully developed. There are besides long thread-like tentacles, which are not hollow, and are exceedingly contractile (c, Fig. 187); in adult specimens they are not distributed regularly, but in young specimens of a quarter of an inch in diameter, having not more than sixteen large tentacles, and sixteen smaller ones (like the large ones) placed between them, we find on the side of each of these sixteen larger tentacles one of these cirri (Fig. 194); but as the number of tentacles increases, the cirri are not formed with the same regularity. We find still a third kind of tentacle: club-shaped

Fig. 185. One of the ovaries and the actinostome.
Fig. 186. Actinostome, actual view.
Fig. 187. Magnified view of a portion of the circular tube. t, one of the large tentacles, with spur and pigment-cells; c, one of the cirri; k, club-shaped appendage.
Fig. 188. Actinostome and rudimentary ovaries of young Medusa, seen in profile.
appendages (k, Fig. 187) made up of large polygonal cells, perfectly transparent, one or two sometimes placed between each of the larger tentacles. The large tentacles have the same color as the ovaries. The young Medusae differ from the adult in the extent of the ovaries, which are limited to the upper part of the chymiferous tubes, close to the digestive cavity (Fig. 188); the ovaries gradually extend further towards the circular tube as they grow older; the digestive cavity is a simple cylinder pressed in, forming small lips; the tentacles also, as described above, are less numerous. The adult Medusa is very active, moving with great rapidity, by drawing its tentacles into the bell, throwing them out again with violence, and allowing itself to be carried along by the momentum it has acquired; twisting its tentacles during that time, and spreading them in every conceivable manner. When it is lazily carried along, the bell often assumes strange attitudes; the thick upper part of the disk becomes rounded, and the thin portion of the umbrella is projected beyond it, like the rim of a four-cornered hat. (Fig. 189.) At other times it seems as if the umbrella had been tied in the middle, the upper and lower part of the disk almost joining in the middle at an obtuse angle. The next moment the disk becomes perfectly flat, the tentacles are drawn up in close knots or shortly-twisted coils, so that it scarcely seems to be the same animal, which in a moment assumes again a globular shape, and darts off to go through the same changes of form.

The Medusa in its youngest stage resembles closely the figure given by Wright of the Medusa of A. repens in the Edinburgh Philosophical Journal. The Hydromedusarium differs so much, that it does not seem to belong to the same genus as the English species; it is found growing along the stems of a species of Dynamena, found just below the line of low-water-mark. The individuals are arranged, in a quincunx manner, on both sides of a long, slender, creeping stem, which does not branch. It resembles a true Campanularia in having a transparent bell disconnected from the stem. Other-

Fig. 189. Different attitude of the Medusa of Fig. 184.
Fig. 190. Hydromedusarium of Lactea calcarata; the extremity of the reproductive calyce is somewhat injured. See Fig. 191.
wise the sterile Hydra reminds us of a true Sertularian, with a few thick tentacles, and a long digestive cavity, capable of great expansion. The bell is attached to the stolon by a short stem, a mere bend in its lower portion, so that the sterile individuals are set off a short distance from the main stem. (Fig. 190.) The reproductive calyces are gigantic, compared to the size of the sterile individuals. (Fig. 190.) They are few in number, not more than two or three to a stem, and resemble those of *L. amphora*; only one or two Medusae are developed simultaneously, the more advanced one filling the cavity of the capsule almost entirely. (Figs. 190, 191.) The sterile individuals recall the Tubularians, as do in fact all the Sertularians, in which the connection between the bell of the sterile individuals and the digestive cavity is not as intimate as in the true Campanularians, giving us at the same time a measure of the embryonic standing of the Tubularians, the Sertularians, and the Campanularians; the Medusae of this Sertularian-like Hydromedusarium resemble more those of the Tubularians than those of the Campanularians. The vertical diameter of the Medusa is greater than the transverse; the bell is of moderate thickness, the abactinal part being slightly conical (Fig. 192); the digestive cavity is short, and consists of four simple lobes, giving the actinostome the shape of a cross. When it escapes from the reproductive calycle, it has only two long tentacles, two slightly developed ones, and four more hardly perceptible in the middle of the space between the four chymiferous tubes (Fig. 193); at the base of all the tentacles, and over the whole surface of the digestive cavity, we find large yellow cells scattered irregularly; the long tentacles are highly contractile; a spiral of lasso cells, diminishing in size, and beginning at a small distance from the sensitive bulb, winds round the tentacles;
at the base of the tentacles the walls are thick, and the sensitive swelling quite prominent, having a dark pigment-spot. The Medusa, when it escapes from the reproductive calyce, has a vertical diameter of about one twentieth to one sixteenth of an inch; the Hydromedusarium is from a quarter to an inch long.

In the next stage observed (Fig. 194) we find the rudimentary tentacles of the previous stage fully developed, and at the same time the thread-like cirri of the adult Lafcea. This stage is important, connecting as it does, without any doubt, two Medusae which had thus far been placed in different genera. The digestive cavity and the ovaries are nearly in the same condition as that observed in young Medusae, where the spur and the different kinds of marginal appendages were as well developed as in the adult; we have as yet, however, in the present stage (Fig. 194), no trace of the spur or of the club-like appendages of the circular tube found in the adult. These club-like appendages of Lafcea and of Ptychogena show that the marginal capsules, the compound eyes, the cirri, and the different rudimentary appendages, are only modified tentacles.

Buzzard’s Bay, Naushon (A. Agassiz).
Cat. No. 151, Naushon, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 271, Naushon, 1861, A. Agassiz. Medusa.
Cat. No. 438, Naushon, 1864, A. Agassiz. Medusa.

Lafcea cornuta Lamx.

Newfoundland (Lamouroux).

Lafcea dumosa Sars.

Lafcea dumosa Sars; in Vidensk. Forh. 1862.

Massachusetts Bay (A. Agassiz). Medusa.
Cat. No. 433, Sea-Coal Bay, N. S., Anticosti Expedition, 1861. Hydrarium.

Fig. 194. Young Medusa still further advanced than Fig. 193.
LAODICEA.

LAODICEA Less.

Laodicea cellularia A. Agass.

I am somewhat doubtful whether this species (Fig. 195) belongs to the genus Laodicea, as the examination of the tentacles could not be made sufficiently accurate to determine this point. The general form of the ovaries, however, is the same, beginning at the digestive cavity, and running in the form of small hanging lobes along the chymiferous tubes, close to the circular tube. The digestive cavity is so short that the edge, which extends in the shape of four long, narrow lips, deeply frilled (Fig. 196), seems the continuation of the chymiferous tubes, reminding us somewhat of the structure of the actinostome of the Æquoridæ, as in Stomobrachium. The epithelial cells are large, irregular, and hexagonal, and can easily be seen with the naked eye. The color of the spherosome is light violet, the ovaries and digestive cavity being of a darker color, and the base of the circular tentacles of a still stronger shade. There are about twenty-four tentacles between each of the four chymiferous tubes, and a tentacle opposite each tube. Found in the Gulf of Georgia and at Port Townsend, from July to September.

Gulf of Georgia, W. T. (A. Agassiz).
Cat. No. 270, Gulf of Georgia, W. T., 1859, A. Agassiz. Medusa.

Fig. 195. Laodicea cellularia.
Fig. 196. One of the lips of the actinostome; c, c, c, termination of the chymiferous tubes into the digestive cavity, d; f, fold of the actinostome connecting the lips of the actinostome.
A remarkable Hydroid Medusa, belonging to the genus Cosmetira of Forbes, was brought home by the Anticosti Expedition, Magdalen Islands, Gulf of St. Lawrence. Cat. No. 371, Magdalen Islands, N. S., Anticosti Expedition. Medusa.

Family MELICERTIDÆ Agass.

GONIONEMUS A. Agass.

Gonionemus has a general resemblance to Melicertum, but differs from it by the shape of the ovaries and of the spherosome. The spherosome is an oblate half-spheroid, cut from pole to pole; the ovaries are in lobes alternating on the sides of the chymiferous tubes, and extending their whole length, from the digestive cavity to the circular tube; the digestive cavity is long, and very flexible; the tentacles are numerous, large, and exceedingly contractile; chymiferous tubes four in number.

Gonionemus vertens A. Agass.

This Medusa was quite commonly found during the month of July, swimming in patches of kelp. It at once attracted my attention by its peculiar mode of moving. I could see these Jelly-fishes, with the tentacles spread out to their fullest extent, sinking slowly to the bottom, the disk turned downward; the moment a blade of kelp touches the disk, they stop, bend their tentacles like knees, and remain attached to the sea-weed by means of their lasso cells (Fig. 197), which are arranged in rings scattered thickly over the surface of the tentacles; after remaining attached in this way a moment, with their tentacles extended and mouth turned upwards, they suddenly let go their hold, turn upside down, contract their tentacles (Fig. 198) to a third of their former length, and begin their upward movements by means of short, rapid jerks, given by the sudden expanding and contracting of the tentacles as they are violently thrown out from the cavity covered by the veil. They keep up this rapid motion until they reach the surface of the water; at the instant the upper part of the
disk touches the top of the water, the Medusa inverts itself, and sinks, with its tentacles fully expanded, until it reaches the bottom, or another piece of sea-weed, where it attaches itself, and after remaining suspended a little while, repeats the same operation; when attached, it requires strength enough to break the tentacles to make them loose their hold. I have never found single individuals, but have always seen them in large numbers swimming among the sea-weed in the manner described. The form of the spherosome is that of an oblate spheroid, cut in two by a plane passing through the north and south poles, the plane of intersection containing the circular tube; there are sixty-four tentacles, fifteen between each chymiferous tube, placed so closely together that they seem all to unite at the base. The tentacles, when contracted, resemble a scythe fastened by a band to the circular tube (Fig. 199); the pigment-cells are numerous, and give the circular tube the appearance of having a large row of violet knobs, to which the tentacles are attached. There is one part of the tentacle, near the tip, which seems to be more thickly covered by lasso-cells, and by which the Jelly-fishes attach themselves; when the tentacles are fully expanded, they always make an angle at that point, as if they had been broken, and the parts joined together again. (Fig. 197.)
ovaries are frill-like lobes (Fig. 200), passing from one side to the other of the chymiferous canal; the chymiferous tubes are slender, and appear like four dark-violet threads, connecting the different lobes of the ovaries. (Fig. 201.) The digestive cavity reaches about two thirds of the length of the chymiferous tubes; it is very flexible, but scarcely contractile (Fig. 201), ending in four large lobes, capable of extending far beyond the main wall of the digestive cavity; the veil is large, leaving an opening of half the diameter across the circular tube.

Gulf of Georgia, W. T. (A. Agassiz).
Cat. No. 286, Gulf of Georgia, W. T., 1859, A. Agassiz.

MELICERTUM Oken.

Melicertum campanula Esch.

Melicertum campanula Esch. in *Syst. der Acal., p. 105*. 1829.
Campanella campanula Mörch; in *Beskriv. af Grönl.,* p. 95. 1857.

This Medusa, first mentioned by Fabricius, has, like many others so characteristically described by him, escaped notice entirely, till it was

Fig. 199. The bend of a contracted tentacle.
Fig. 200. A portion of the genital organs.
Fig. 201. One chymiferous tube and half of the digestive cavity.
observed on the coast of New England. Undoubtedly a few others of the Jelly-fishes he has enumerated will prove identical with species since described, on the coast of England and on our own shores. A Medusa of this same genus was figured and described by Forbes under the name of Stomobrachium octocostatum; from the figure of Forbes it is evidently not a Stomobrachium, and is probably this same Medusa which he found in the North of Scotland. Fig. 202 is a profile view, natural size, of the Melicertum, one of the most common of our naked-eyed Medusae. In the fall, at the time of spawning, it literally swarms at the surface, and on sunny days seems particularly to delight to come to the surface, where it remains in the afternoon until dark, being one of the few Medusae (Zygodaetyla groenlandica has the same habit) which are to be met with in the afternoon. The genus Melicertum is closely related to the Eequora, by the number of its radiating tubes (of which there are eight), and to Staurophora, by the blending of the genital organs with the actinostome, and the total absence of marginal bodies, such as capsules, cirri, and so forth. If the small Medusae here figured (Figs. 203, 204) are in reality the young of Melicertum,—Melicertum being the only Medusa allied to Staurophora which has no eye-specks,—the close affinity between them is still more strongly marked in the young of these two genera, which can only be distinguished from one another by the presence or absence of eye-specks.

From an examination of the Medusa of Lafoea calcarata, I had already come to the conclusion that the young Medusa was nearly related to Staurophora and Melicertum. Having succeeded in finding another Medusa evidently closely allied to it, I was not surprised in recognizing a Melicertum of younger stage than any which I had observed before. With the stage represented in Fig. 205, which has been traced until there could be no doubt as to the genus to which the young Medusa belonged, I was sufficiently familiar, from its frequent occurrence in the latter part of the spring, to recognize at once in

Fig. 202. Profile of Melicertum campanula, natural size.
Fig. 203 only a somewhat younger form of the same Medusa. We have thus established, by the observation of this Medusa, as well as from the young Hydrarium of Melicertum and Lafoea, the probable character of the Hydrarium from which Melicertum, Staurophora, and those Medusae which have no marginal capsules, are developed; showing that they hold an intermediate position between the Campanularians and the Tubularians, being more closely allied to the latter in their embryonic condition, and assuming as adult Medusae somewhat the aspect of Campanularian Medusae. The *Trichydra pudica* of Wright is also closely allied to Lafoea and Staurophora. In the young Medusa we have at first only two primary tentacles (Fig. 204) and two rudimentary ones, and in the next stage there are sixteen. (Fig. 205.)

The presence of eye-specks at the base of the tentacles of the young Medusae of *Lafoea calcarata* and of *Staurophora laciniata* are the surest means of distinguishing them with accuracy. The differences in the shape of the bell between these youngest Medusae (Fig. 203) and somewhat older stages (Fig. 205), are of a similar character to those we are familiar with among the young Campanularian Medusae of other genera. To judge from analogy, I strongly suspect that the young Medusa of Staurophora will in its turn be a Medusa, similar to these Lafoean forms, having at first but two primary tentacles. In the next

Fig. 203. Profile view of very young Medusa of Melicertum campanula; Lafoea like. See Fig. 192.

Fig. 204. Half the disk of the same, seen from the aboral pole.

Fig. 205. Young Melicertum, with only four completely formed chymiferous tubes. 1, first set of chymiferous tubes; 2, second set; 1, 2, 3, tentacles of the first, second, and third sets.
MELICERTUM CAMPA NULA.

stage (Fig. 205), which is undoubtedly a young Melicertum, we find the second set of four chymiferous tubes developing (2, Fig. 205); they arise, as in the Æquoride, from the digestive cavity, and extend towards the circular tube; there are at this stage sixteen tentacles, usually carried curled up, as in the accompanying figure. I have not seen the young Melicertum in stages intermediate between those slightly more advanced than Fig. 205, and when they are fully developed, as in Fig. 202, where the genital organs extend to the circular tube, and the marginal tentacles have become exceedingly numerous.

The spherosome is regularly bell-shaped; it is capable of very varied expansion and contraction, appearing at some times almost rectangular, then as if tied in the middle, swelling at both poles, again flaring at the abactinal extremity, and strongly contracted at the circular tube, or flattened like a quoit. The tentacles may expand several times the polar diameter of the bell, or contract, by curling close to the circular tube. The bell is of a light ochre color; the genital organs, as well as the base of the tentacles, are of a darker shade. When seen from above (as Fig. 206), the radiating tubes open into a sort of cavity, as in the Æquoride, the folds of one genital organ extending across to the next, as seen in Figs. 207, 208; the ovaries are convoluted (Fig. 207), extending from 7, Fig. 207, to the circular tube, where they have their greatest diameter; the lips of the actinostome are carried in eight folds (Fig. 208), each one, 7, corresponding to one of the radiating tubes, 6, as in the Æquoride; the lips project but little into the cavity of the bell. The tentacles are hollow, somewhat dumb-bell shaped at the base.

Fig. 206. The same, seen from the abactinal pole. 7, mouth; 6, genital organs; 5, tentacles.
Fig. 207. Magnified view of two chymiferous tubes and genital glands. 7, lips of actinostome.
Fig. 208. Mode of carrying the lips of the actinostome. 7, lips of actinostome; 6, chymiferous tube.
Fig. 209. Magnified view of marginal tentacles.
(Fig. 209), and taper rapidly; they are thickly covered with lasso-cells.

Artificial fecundation of these Medusae can be very readily made by keeping males and females for a day or two together in a glass jar, when we shall find, swimming near the bottom, innumerable spherical embryos (Fig. 210), in which the spheres of segmentation are still visible; these elongate (Fig. 211), a cavity is formed at the blunt end, and we have a somewhat pear-shaped embryo, strongly ciliated, with walls of uniform thickness (Fig. 212), swimming about with great velocity; these embryos attach themselves by the blunt end (Fig. 213), and soon elongate, as in the two middle figures of Fig. 213; the slender extremity next swells (Fig. 214), and this is the first trace of the sterile Hydra head. The wall of this swelling soon becomes somewhat indented, as in Fig. 214, where we have some of the successive stages of the sterile Hydra, until it forms a small horny bell, covering only the base of the long, sterile Hydra head, which terminates with ten stout, short tentacles, connected by a web. This Hydrarium differs considerably from that of Lofkea, but it still has sufficient resemblance to show their connection; it is one of the easiest to raise, the Planulae are very hardy, and the development of the Hydrarium is readily followed. It grows in small tufts, which after six months had not attained a greater height than one third of an inch.

Greenland (Fabricius); Massachusetts Bay (Agassiz).
Cat. No. 351, Grand Manan, L. Agassiz. Medusa.
Cat. No. 373, Nahant, 1863, A. Agassiz. Medusa.
Cat. No. 448, Nahant, 1864, A. Agassiz. Medusa.
Melicertum georgicum A. Agass.

The Medusa (Fig. 215) is here figured to show the differences noticed between it and the New England representative of the genus. The pointed spherosome, the smaller number of the circular tentacles, the longer actinostome, and the termination of the genital organs, somewhat above the circular tube, are characters which readily distinguish the M. georgicum from its Eastern representative. The knowledge of its complete development will settle this point definitely. The close resemblance of the mode of attachment of the ovaries to that of the Æquoridæ, referred to in the preceding species, is readily seen in Fig. 216. The genital folds are looped up on the upper side of the interior of the bell in an octagonal outline (Fig. 216), opening into the large cavity formed by the eight constrictions of the lips, l, of the actinostome. The difference is simply in the number of the chymiferous tubes, as well as in the mode of carrying the lips of the actinostome. A simple flattening of the spherosome, and an increase in the number of chymiferous tubes, would give us an Æquorea. This Medusa is found, in the summer, in the Gulf of Georgia, W. T.

Fig. 215. Profile of Melicertum georgicum, natural size.
Fig. 216. Digestive cavity and point of junction of the chymiferous tubes. l, lips of actinostome; p, abactinal point of attachment of genital organs; c, opening leading into chymiferous tubes. Magnified.
STAUROPHORA.

STAUROPHORA Brandt.

Staurophora Brandt (non Forbes); in Mem. Acad. St. Petersb. II. p. 399. 1835.

Staurophora laciniata Agass.

The youngest Medusa of Staurophora which has been observed (Fig. 215**) resembles to such an extent the young Melicertum (Figs. 203, 205), as readily to have been taken for different stages of the same Jelly-fish, did not the absence of pigment eye-specks enable me to distinguish them sufficiently easily. The development of the tentacles of the young Medusa explains itself from the accompanying figures (Figs. 216*, 217), as well as the changes of form of the digestive cavity, as it passes from a simple pendent pouch (Fig. 215**) through the different stages (a, b, c, Fig. 218), where the digestive cavity loses little by little its individuality, the corners gradually extend along the chymiferous tubes, and in quite young specimens (c, Fig. 218) the actinostome can no longer be distinguished among the innumerable small folds of the genital pouches. In Fig. 219 the young Staurophora has all the characters of the adult, excepting the size of the different parts. The violet pigment-spots at the base of the tentacles are quite apparent, being perceptible in

Fig. 215*. Young Staurophora, with eight tentacles.
Fig. 216*. Quarter of the disk of a young Staurophora, with sixteen large tentacles.
Fig. 217. Young Medusa, somewhat more advanced than Fig. 216*.
Fig. 218. Different stages of the actinostome, intermediate between that of Figs. 215* and 219. a, the youngest; b, the next; c, the oldest.
PTYCHOGENA.

younger stages. (Figs. 215, 216, 217.) This Medusa grows to a large size, measuring often six to eight inches in diameter. It is one of the earliest Medusae to make its appearance, attains its full size rapidly from May to June, and by the end of June the dead Medusae are found in large numbers, floating about after storms; by the middle of July they have all disappeared. Found at Nahant.

Massachusetts Bay (Agassiz); Maine (Stimpson).
Cat. No. 275, Nahant, A. Agassiz. Young and old Medusae.
Cat. No. 359, Boston Harbor, L. Agassiz. Medusa.

Staurophora Mertensii Br.

Norfolk Sound (Mertens).

PTYCHOGENA A. Agass.

The Medusa for which this genus has been established shows the intimate structural connection between Staurophora, Melicertum, and Polyorchis. The structure of the genital organs is an intermediate state of development between organs where the folds of the actinosome are lost in the genital folds, as in Staurophora, and the other extreme, where we have pendent genital organs attached to one extremity of diverticulate chymiferous tubes, as in Polyorchis.

Ptychogena lactea A. Agass.

The bell of this Medusa is rather high (Fig. 220), and the spherosome of considerable thickness, giving this species an appearance of consistency, which is heightened by the striking contrast with the water of the milky genital organs and numerous marginal tentacles. The chymiferous tubes are broad; at an equal distance on the abactinal and actinal ends, the edges of the tube become hacked; the notches increase in size, and soon become long, sharp folds of the walls of the chymiferous tubes, projecting at right angles from the tubes (Fig. 221); the larger of these folds branch again. To these folds the genital organs are attached, forming as many connecting

Fig. 219. Young Staurophora, having the general aspect of the adult.
pouches as there are points to the projections of the chymiferous tubes; the folds become smaller and smaller (Fig. 222) towards the abactinal pole, and are connected by a loose fold with the actinostome. The opening of the actinostome is large; its folds are small, and do not form regular lips, but merely an irregular quadrangular frill. (Fig. 223.) The tentacles are extremely numerous, opening into a large circular tube; they are very much flattened in one direction (f, Fig. 224); between every two tentacles is found a club-shaped appendage, made up of large cells somewhat like those of Lusiga calcarata (b, Fig. 224); the tentacles are capable of great expansion, and when contracted are usually curled up tightly, as is the case in Melicertum and Staurophora; they are very frequently tied up in festoons, as in Fig. 220. This

Fig. 220. Profile view of Ptychogena, somewhat reduced.
Fig. 221. Magnified view of the genital organs, seen from the abactinal pole.
Fig. 222. The same as Fig. 221, seen in profile, on a somewhat smaller scale.
Fig. 223. Actinostome. a, opening of actinostome; p, point of attachment of the digestive cavity; l, lips of the actinostome.
Fig. 224. Magnified base of tentacles and club-shaped appendages. f, swelling of tentacles; b, club-shaped appendages.
Medusa, like Tima, swims at a considerable depth below the surface. The action of the light and increase of temperature of the surface is sufficient to kill them in the course of half an hour; the moment they are brought to the surface, the spherosome loses its transparency, the genital organs become dull, and the Medusa is soon completely decomposed. This action is much more rapid than any thing of the kind which I have noticed even in Ctenophora, Mertensia being the only genus in which the decomposing effects of light and heat are at all equal to what is produced here. This Jelly-fish must be a deep-water species, as they have only been found during a single fall, and then only for a few days, when they seemed quite abundant.

Massachusetts Bay, Nahant (A. Agassiz).

Family PLUMULARIDÆ Agass.

AGLAOPHENIA Lamx. (*restr.* McCr.).

Aglaophenia pelagica McCr.

Cat. No. 253, Florida, 1858, L. Agassiz. Hydrarium.

Cat. No. 254, Tortugas, Fla, 1859, L. Agassiz. Hydrarium.

Cat. No. 255, Hayti, 1858, Dr. D. F. Weinland. Hydrarium.

Cat. No. 256, Gulf Weed, 1858, Dr. D. F. Weinland. Hydrarium.

Cat. No. 257, Gulf Weed, 1858, Dr. D. F. Weinland. Hydrarium.

Cat. No. 390, a hundred miles south of Cape Hatteras, A. S. Bickmore. Hydrarium.

Cat. No. 391, a hundred miles south of Cape Hatteras, A. S. Bickmore. Hydrarium.
Aglaophenia trifida Agass.
Aglaophenia cristata McCr. (non Lamk.). Gymn. Charleston Harb., p. 100.

Charleston, S. C. (L. Agassiz).

Aglaophenia tricuspis McCr.

Charleston, S. C. (McCrady).

Aglaophenia franciscana A. Agass.
Plumularia franciscana Trask; in Proc. Cal. Acad., March, 1857, p. 101, Pl. 4, Fig. 3.

San Francisco (A. Agassiz).

PLUMULARIA LAMK. (restr. McCr.).

Plumularia quadridens McCr.

Charleston, S. C. (McCrady); Florida (L. Agassiz).
Cat. No. 251, Ship Channel, Florida, January, 1856, L. Agassiz.

Plumularia arborea Des.

Massachusetts Bay (Desor).
Family SERTULARIADÆ Johnst.

DYNAMENA LAMX. (restr. Agass.).

Dynamena Lamx.; in Bull. Soc. Phil. 1812.

Dynamena pumila Lamx.

Dynamena pumila Lamx. Cor. Flex., p. 179.
Sertularia thuja Fab. (teste Mörch). Fauna Groenl., No. 456.

This is one of the few of our Hydroids (Fig. 225) which have been compared in a living state with European specimens sent by Mr. Thos. J. Moore to the Museum, and brought across the Atlantic by Captain Anderson. Professor Agassiz, supposing it to be a distinct species, had previously given it the name of Dynamena Fabricii; and before he

Fig. 225. Cluster of Dynamena pumila.
Fig. 226. Magnified portion of stem of Fig. 225.
Cat. No. 171, Chelsea Beach, L. Agassiz. Hydruarium.
Museum Diagram No. 18, after L. Agassiz.

Dynamena corincina McCr.

Charleston, S. C. (L. Agassiz).
Cat. No. 175, Charleston, S. C., L. Agassiz. Hydruarium.

DIPHASIA Agass.

Diphasia fallax Agass.

Grand Manan (W. Stimpson); Massachusetts Bay.
Cat. No. 183, Eastport, Me., 1851, L. Agassiz.
Cat. No. 184, Eastport, Me., 1852, W. Stimpson.
Cat. No. 185, Massachusetts Bay, L. Agassiz.
Cat. No. 427, Eastport, Me., 1861, Anticosti Expedition.
Cat. No. 428, Eastport, Me., 1863, A. E. Verrill.

Diphasia rosacea Agass.

Sertularia rosacea Linン. Syst. 1306.

SERTULARIA. 143

Diphasia corniculata A. Agass.

Sertularia corniculata Murray; in Ann. & Mag. N. II., X. Pl. XI. Fig. 3. 1860.

Bay of San Francisco (Murray).

SERTULARIA LINN. (emend. Agass.).

Sertularia Linn. Syst. Nat.

Sertularia abietina LINN.

Sertularia abietina Linn. Syst. 1307.
Sertularia abietina Fab. Fauna Groenlandica. No. 453.

St. George's Bank, Newfoundland; Mingan Islands.
Cat. No. 197, St. George's Bank, W. Stimpson.
Cat. No. 419, Mingan Islands, 1861, Anticosti Expedition.

Sertularia cupressina LINN.

Sertularia cupressina Linn. Syst. 1308.

Absecom Beach (Leidy); Massachusetts Bay (Agassiz).
Cat. No. 203, Beverly, July, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 204, Nahant, May, 1862, A. Agassiz. Hydromedusarium.
Cat. No. 212, Massachusetts Bay, L. Agassiz.
Sertularia argentea *Ell. & Sol.*

Sertularia argentea *Ellis & Sol.* Zool., p. 38.
Sertularia argentea *Johst.* Brit. Zool., p. 79, Pl. 15, Fig. 3; Pl. 14, Fig. 3.
Sertularia argentea *Mörch.* in Besk. af Grönl., p. 97.
Sertularia fastigiata *F. & H.* teste *Mörch.* Fauna Grönländica, No. 458.

Grand Manan (W. Stimpson).

Sertularia falcata *Linna.*

Sertularia falcata *Linna.* Syst. 1735.
Plumularia falcata *Johst.* Brit. Zool., p. 90, Pl. 21, Figs. 1, 2.

Grand Manan (W. Stimpson); Eastport, Me. (W. Stimpson); Mingan Islands; Massachusetts Bay (Agassiz).
Cat. No. 219, Grand Manan.
Cat. No. 221, Grand Manan, W. Stimpson.
Cat. No. 222, Eastport, Me., 1851. Hydrarium.
Cat. No. 415, Mingan Islands, 1861, Anticosti Expedition. Hydrarium.
Cat. No. 417, Mingan Islands, 1861, Anticosti Expedition. Hydrarium.
Cat. No. 424, Eastport, Me., 1861, Anticosti Expedition.

Sertularia anguina *Trask.*

Sertularia anguina *Trask*; in Proc. Cal. Acad. N. S., p. 100, Pl. 5, Fig. 1. 1857.
Sertularia labrata *Murray*; in Ann. & Mag. N. H., V, p. 250, Pl. XI, Fig. 2. 1860.

Bay of San Francisco (Trask, Murray); Monterey, Punta de los Reyes, Tomales Point (Trask).
SERTULARIA TURGIDA.

Sertularia gracilis A. Agass.

Plumularia gracilis Murray; in Ann. & Mag. N. H., V. p. 251, Pl. XII. Fig. 1. 1860.

Bay of San Francisco (Murray).

Sertularia myriophyllum Linn.

Sertularia myriophyllum Linn. Syst. 1309.

Cat. No. 214, Massachusetts Bay, L. Agassiz.
Cat. No. 418, Mingan Islands, Anticosti Expedition.
Cat. No. 429, Eastport, Me., A. E. Verrill.
Cat. No. 430, Eastport, Me., A. E. Verrill.

Sertularia latiuscula Stimps.

Grand Manan (W. Stimpson).

Sertularia filicula Ell. & Sol.

Sertularia filicula Ellis & Sol. Zooph., p. 57, Pl. 6, Figs. c, C.
Sertularia filicula Johnst. Brit. Zooph., p. 76, Pl. 14, Fig. 1.

Grand Manan (W. Stimpson).

Sertularia furcata Trask.

Sertularia furcata Trask; in Proc. Cal. Acad., March, 1857, p. 101, Pl. V. Fig. 2.

San Francisco (Trask).

Sertularia turgida Trask.

Sertularia turgida Trask; in Proc. Cal. Acad., March, 1857, p. 101, Pl. IV. Fig. 1.

San Francisco (Trask).

Sertularia producta Stimps.

Grand Manan (W. Stimpson).
AMPHITROCHA AGASS.

Amphitrocha rugosa Agass.

Sertularia rugosa Linn. Syst. 1308.
Sertularia rugosa Mörch; in Besk. af Grönl, p. 97.

Massachusetts Bay (L. Agassiz); Grand Manan (W. Stimpson).
Cat. No. 226, Nahant, April, 1855, H. J. Clark. Hydromedusarium.
Cat. No. 228, Nahant, August, 1854, H. J. Clark. Hydramarium.
Cat. No. 229, Nahant, July, 1861, A. Agassiz. Hydramarium.
Cat. No. 406, Nahant, July, 1862, A. Agassiz.

COTULINA AGASS.

Cotulina tricuspidata A. Agass.

Massachusetts Bay (L. Agassiz).
Cat. No. 233, Massachusetts Bay, L. Agassiz.
Cat. No. 234, Massachusetts Bay, L. Agassiz.

Cotulina polyzonias Agass.

Sertularia polyzonias Linn. Syst. 813.
Sertularia polyzonias Mörch; in Besk. af Grönl, p. 97. 1857.

Eastport, Me. (A. E. Verrill); Mingan Islands (Anticosti Expedition); Grand Manan (W. Stimpson).
Cat. No. 426, Eastport, Me., 1863, A. E. Verrill.
Cat. No. 434, Mingan Islands, 1861, Anticosti Expedition.

Cotulina tamarisca A. Agass.

Sertularia tamarisca Linna. Syst. 1307.

Eastport, Me. (A. E. Verrill; Sea-Coal Bay, N. S. (Anticosti Expedition); Massachusetts Bay (Agassiz).
Cat. No. 431, Sea-Coal Bay, N. S., 1861, Anticosti Expedition.

Cotulina Greenei A. Agass.

Growing in very thick clusters, resembling somewhat in their appearance fine brushes of *Dynamena pumila*. It is supported by a very slender stem, which branches near the base; the branches rise vertically, forming fan-shaped tufts, in which all the stems reach one level; there is no prominent main stem. It attains a height of from two to three inches. The secondary branches arise in a similar way, near the base of the primary branches. The sterile hydræ have two prominent exterior points to support the operculum, and two smaller ones near the stem. The reproductive calyces are conical and slightly corrugated, attached by the apex, and terminate in a bottle-shaped neck.
San Francisco, Cal.
Cat. No. 436, San Francisco, Cal., Normal School, Salem.

HALECUM Oken.

Halecium Oken. Lehrb. der Naturg. 1815.
Thon Lamx. Pol. Cor. Flex. 1816.

Halecium muricatum Johnst.

Sertularia muricata Ellis & Sol. Zool., p. 59, Pl. VII. Figs. 3, 4.

THUIARIA.

Halecium halecinum Johnst.

Sertularia halecina Linn. Syst. 1398.
Sertularia halecina Fab. Fauna Grönlandica. No. 455.

Eastport, Maine; Massachusetts Bay.
Cat. No. 244, Suiseconset, Mass., L. Agassiz.

GRAMMARIA Stimps.

Grammaria gracilis Stimps.

Grand Manan (W. Stimpson).

Grammaria robusta Stimps.

Grammaria robusta Stimps. Mar. Inv. Grand Manan, p. 9, Fig. 3. 1853.

Grand Manan (W. Stimpson).

THUIARIA Flem.

Thuiaria thuja Flem.

Sertularia thuja Linn. Syst. 1308.

Mingan Islands, N. S.
Cat. No. 240, Norway, M. Sars.
Cat. No. 420, Mingan Islands, N. S., Anticosti Expedition, 1861. Hydrarium.
Suborder TUBULARIÆ Agass.

Family NEMOPSIDÆ Agass.

NEMOPSIS Agass.

Nemopsis Bachei Agass.

Nemopsis Bachei Agass.; in Mem. Am. Acad., IV. p. 289, Fig. 1849.

Owing to the great changes through which Nemopsis passes before it reaches its adult form (compare Figs. 227–230), it is impossible to decide at present, before having seen the Nemopsis Gibbesi of McCrady, found at Charleston, whether he has not described again, under a new name, the N. Bachei found by Professor Agassiz in Vineyard Sound in 1848, and of which a wood-cut was published in the Memoirs of the American Academy for 1849. The circumstances under which the drawing was made precluded the possibility of great accuracy; it was a simple sketch; and as this Medusa has not been observed since, until the publication of McCrady’s paper on the Meduse of Charleston Harbor, it is not astonishing that he should have described it as a new species, having only for his guide that single wood-cut.

I have had, during the summer of 1861, the opportunity of observing this Medusa, at the time when it had only four tentacles to each marginal bulb (Fig. 227), no ovaries, and was not more than a sixteenth of an inch in diameter. The shape of the bell, and of the oral tentacles, the mode of branching of the digestive cavity and of the tentacles, agree so well with the drawings and descriptions of McCrady of similar stages in N. Gibbesi, that I am inclined to consider them as identical. The
only point which would throw some doubt upon this identification, is the time of the year at which it appears in Charleston and in Vineyard Sound; in the former place it is a winter species, found in December, while at Naushon it was very common in September. The marginal tentacles increase in the same way as in Bougainvillia; those which are nearest the middle of the bulb, at its apex, are developed first, and new tentacles are constantly growing near the base of the conical-shaped bulb. (Figs. 228, 229.) They are at first slender-pointed tentacles, but soon become rounded at the extremities, with sensitive eye-specks at the base, and change into contractile tentacles, having a slight swelling at the extremity; this swelling, however, depends very much upon the state of contraction of the tentacles. The adult frequently swim about with the marginal tentacles contracted to mere knobs, rising from the sensitive bulb (Fig. 229); during their movements, which are rapid and powerful, the oral tentacles (Fig. 230) are thrown up and down at each pulsation with great violence, and seem to be important appendages in directing the motions of the animal. With the exception that the tentacles, which are carried erect upon their base, are not contractile like the others, and have a more clavate appearance (Figs. 227–230), they differ in no way from the others. There are eye-specks at the base of the erect tentacles, as well as at the base of the contractile ones, and the supposition that in this genus the eyes were supported upon a peduncle, like the eyes of a lobster, was founded upon the dark club terminating this pair of tentacles; this color is due entirely to a thickening of the extremity by contraction. Male specimens have been found measuring more than half an inch in diameter. The proboscis projects well beyond the line of the genital organs (Fig. 231); at first, in young stages, the genital organs occupy but a very

Fig. 228. Nemopsis somewhat more advanced than Fig. 227, having the second and third set of tentacles developed.

Fig. 229. Magnified view of the sensitive bulb at the base of one of the chymiferous tubes, c.

Fig. 230. Nemopsis in which the genital organs extend a considerable distance along the chymiferous tubes.
ACAULIS. 151

small portion of the upper part of the chymiferous tubes (Figs. 227, 228), but with advancing age extend farther down (Figs. 230, 231), and in the adult they reach the circular tube. The genital organs remind us, in their mode of growth, of what we find in Melicertum and Staurophora. The outline of the bell is but little changed from the earliest stages to the more advanced; it simply grows somewhat more globular. The sensitive bulb as well as the ovaries are slightly yellowish.

McCrady describes the Hydroid of this Medusa as a free floating community; I greatly incline to the opinion of Professor Allman, that we have in these free Hydroids nothing but the detached head of some Tubularian; certainly the figures given by McCrady of the Hydroid of Nemopsis, and by Stimpson of Acaulis, remind us very forcibly of detached heads of Tubularians. The heads of our Pennaria (Globiceps tiarella Ayres) frequently drop off, and nothing is more common than to see, at the time of breeding, several of these heads, covered with Medusae, floating about in the jars where the Pennariae are kept, and to have the Medusae buds come to maturity while the head is thus detached, and would readily be mistaken for something like a free Hydroid. During four successive summers I have hunted in vain in the hope of finding one of these free Hydroids among the innumerable small Medusae which must have just separated from the Hydrarium, which makes it probable that the Hydrarium is fixed, and not floating.

Vineyard Sound (L. Agassiz); Buzzard’s Bay (A. Agassiz); Charleston Harbor (McCrady).

ACAULIS STIMPS.

Acaulis primarius STIMPS.

Acaulis primarius STIMPS. Mar. Inv. Grand Manan, p. 10, Pl. 1, Fig. 1.

Grand Manan (W. Stimpson).

Fig. 231. Magnified view of the genital organs, the actinostome, and the oral tentacles.
Family BOUGAINVILLEÆE Lütk.

BOUGAINVILIA Less.

Bougainvillia Mertensii Agass.

If the Hydrarium, collected at San Francisco, is the Hydrarium of Bougainvillia Mertensii, there can be no doubt of the specific difference between it and Bougainvillia superciliaris Agass. It grows quite luxuriously, attaining a height of nearly two and a half inches; the stems are very stout, particularly the main branch, which near the base is exceedingly robust; the branches are at least three times as stout as those of the Hydrarium of our Bougainvillia, which is slender, and always branches quite loosely. In the California species the branches succeed each other rapidly, and are crowded on the sides of the main stem. This would seem to prove that this species, like the Coryne rosaria, is the representative on the Pacific coast of its eastern congener, and that neither the Coryne mirabilis nor the Bougainvillia superciliaris are circumpolar species, like the Toxopneustes drobachiensis.

This species is undoubtedly the Hippocrène Bougainvillei Br. which Mertens found at Mathaei Island, in Behring's Strait, and which is figured in the Memoirs of the Academy of St. Petersburg for 1838, Vol. II. The ramifications of the tentacles surrounding the actinostome are very numerous, and the eye-specks at the base of the marginal tentacles small. The spherosome has a slight bluish tinge; the chymiferous tubes, the tentacles surrounding the mouth, and the marginal tentacles, are straw-colored; the base of the tentacles is yellowish-brown. This species is much larger than either Bougainvillia superciliaris or B. maculiciana; it was quite common during the summer, in the harbor of Port Townsend, at the northwest boundary, in the
BOUGAINVILLA SUPERCIULARIS.

Gulf of Georgia, and was also found in the harbor of San Francisco during May and November.
Behring's Strait (Brandt); Gulf of Georgia, W. T. (A. Agassiz).
Cat. No. 49, Gulf of Georgia, W. T., May, 1859, A. Agassiz. Medusa.

Bougainvillia superciliaris Agass.

The development of the young Medusae of the species, formerly referred to Bougainvillia, shows beyond doubt that the genera Bougainvillia and Margelis are founded upon structural differences; from the earliest stages we can trace the peculiar short and long digestive cavities so characteristic of these two genera, as well as the differences in the form of the bell. Bougainvillia superciliaris (Fig. 232), of which a complete description has already been given by Professor Agassiz, in the Memoirs of the American Academy for 1849, is one of our most common Medusae, but readily escapes notice on account of its small size. The Hydrarium (Fig. 233) has also been figured by Professor Agassiz in Vol. IV. of his Contributions, but the development has not been traced before. The Medusa buds are found along the stem below the heads; Figs. 234, 235 are early stages, when the bell is elongated, and inca-

Fig. 232. Magnified profile view of adult Bougainvillia superciliaris.
pable of expansion and contraction. In Figs. 236, 237, which are somewhat older Medusæ in different attitudes, the digestive cavity is well developed, and from the four corners of the actinostome bulge out four club-shaped appendages, the first traces of the oral tentacles. There are two well-developed tentacles, which were at first a mere knob, with distinct eye-specks. (Fig. 234.) The bell is quite thin at this stage, and

Fig. 233. Hydromedusarium of Bougainvillia superciliaris.
Fig. 234. Young elongated Medusa.
Fig. 235. Somewhat more advanced than Fig. 234.
Fig. 236. Appearance a short time before separating from the stem, in a contracted state.
Fig. 237. The same as Fig. 236, expanded.
Fig. 238. Young Bougainvillia, immediately after its liberation from the Hydromedusarium.
of uniform thickness, the veil large and powerful; the abactinal portion of the bell becomes somewhat more thickened, and when it has separated from the Hydrarium (Fig. 238), the tentacles far exceed in length the diameter of the bell, the sensitive bulb (Fig. 239) having become quite well defined in outline; it is somewhat quadrangular, filled with dark pigment cells, p, and at the base of each tentacle a bright eye-speck, e, is formed; the club-shaped oral appendages soon begin to branch, additional tentacles appear in pairs on each side of the original pair (Fig. 240), and the young Medusa soon assumes all the principal features of the adult, as in Fig. 232, with the exception of the simpler character of the tentacles of the actinostome.

Massachusetts Bay (Agassiz).
Cat. No. 28, Beverly, July, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 29, Nahant, July, 1861, A. Agassiz. Hydrarium.
Cat. No. 30, Newport, R. I., Prof. J. Leidy. Hydromedusarium.
Cat. No. 31, Newport, R. I., S. Powell. Hydromedusarium.
Cat. No. 408, Nahant, July, 1862, A. Agassiz. Hydromedusarium.
Museum Diagrams, Nos. 20, 22, after A. Agassiz.

MARGELIS STEENST.

The structural differences observed in the European Bougainvillia britannica Forbes, and the Hippocrene carolinensis McCrady, seem sufficient to separate them from the genus Hippocrene, as has been proposed by McCrady. The digestive cavity, instead of being a short, rounded sac, attached at some distance below the highest point of the chymiferous tubes, is long and slender, swelling slightly towards its actinal end, and attached at the point of junction of the chymiferous tubes; the peduncle of the actinostome is long, the oral tentacles branch only two or three times; these are more than specific differences; they are structural differences, unlike the differences we find between species of the genus Bougainvillia, as between the

Fig. 239. Magnified view of sensitive bulb. p, pigment-cells; e, eye-speck.
Fig. 240. Tentaculb bulb with the young tentacles. c, chymiferous tube; 1, 2, 3, 4, different sets of tentacles.
Hippocrene supercilialis of the northeast coast, and the Hippocrene Mertensii of the northwest coast, which are differences in the proportion of the digestive cavity, its position, the thickness of the bell, and the mode of branching of the oral tentacles.

Margelis carolinensis Agass.

Adult females, taken at Nanshon in September, measured about one third of an inch (Fig. 241); the main stem of the four oral tentacles branches twice, and each of these branches twice (Fig. 242); the cavity of the bell is small and globular; the marginal bulbs are large and conical, and give rise (Fig. 243) to ten or twelve tentacles, which are long, slender, and not usually carried curled up tightly near the bulb; the bulb is colored with brilliant red pigment-cells, surrounded by a green edge, bordered with bright yellow, and in the yellow border are placed the black eye-spots, giving to the base of the tentacles a very striking appearance; the digestive cavity is brick red, and when the folds of the genital glands are expanded by eggs, they hang down in four pouches, so as to hide the peduncle of the digestive cavity. (Fig. 242.) The outline of

Fig. 241. Adult Margelis, seen in profile; magnified.
Fig. 242. Digestive cavity, genital pouches, oral tentacles, and actinostome.
Fig. 243. Sensitive bulb at base of one of the chymiferous tubes.
the bell is almost spherical; the thickness of the disk is so great that the cavity of the bell only extends to half the height of the vertical axis. (See Fig. 241.)

In young specimens (one tenth of an inch in height) just liberated from the Hydromedusarium, the outline of the disk is bell-shaped (Fig. 244), the cavity of the bell is large in proportion, and the thickness of the upper part of the bell is not one third of the height of the actinal axis. The digestive cavity and the peduncle are one; it is bottle-shaped, cylindrical, and not yet divided by four longitudinal furrows into genital pouches. These small Medusae have, like the young of Bougainvillia, when freed from the Hydromedusarium, but two tentacles at the base of each of the chymiferous tubes (Figs. 244, 245), the digestive cavity terminates likewise with perfectly simple, stiff oral tentacles, which begin to branch only in somewhat more advanced stages. The generic identity of Bougainvillia britannica with our Margelis carolinensis is perhaps not better shown than by the agreement of the young Medusae in all their essential features, while the Hydrarium shows that the specific difference between the English and American representatives is not to be questioned. See the observations of Dalyell on the development of his Tubularia ramosa, Pl. XI. Vol. I, Animals of Scotland, and the figures of Hodge of Podocoryne Alderi, which I presume is only a young of one of the species of Bougainvillia (Margelis Steenst.) of Forbes. It seems therefore perfectly justifiable to reconstruct the genus Bougainvillia in such a way as to separate from it those species which have a long, slender digestive cavity, with but slightly branching tentacles, under the name of Margelis.

The oral tentacles are, in the youngest Medusae (Fig. 244), small,
simple tentacles, terminating with a cluster of lasso-cells; in somewhat older Medusæ the oral tentacles have two branches, as in Fig. 246, when there are six tentacles to each marginal bulb, with a small bundle of lasso-cells at the extremity. As the young Medusa grows, the bell loses its conical shape, and becomes more spherical. The marginal tentacles of the young are carried curved inwards towards the veil; as they increase in length they lose this tendency, and are stretched out in every direction. The additional tentacles are added at the base of the conical bulb, those which are near the apex being always the longest and oldest.

The Hydrarium (Fig. 247) grows to a very large size, from eight to twelve inches in height; it resembles in its general mode of branching Eudendrium ramosum. The main stem is stout, and tapers gradually; the main branches begin close to the root, and thus form clusters of stems, from which branch off irregularly secondary branches, which are quite slender, and ramify but little. The Hydræ are very large, and quite closely packed together, growing with equal profusion on the main stem and on the branches. The Hydrarium is found growing attached to Fucus vesiculosus in great abundance. The general color of the main stem is somewhat grayish green, the Hydraæ are of a delicate rosy tint. The Medusæ buds are developed, somewhat as in our Bougainvillia superciliaris, along the stem (Fig. 248), without, however, being limited to the proximity of the Hydra head, as the Medusæ make their appearance

Fig. 246. Proboscis of a Margelis, having already six tentacles at each sensitive bulb.
Fig. 247. Hydrarium of Margelis carolinensis, greatly reduced in size.
Fig. 248. Magnified heads and Medusæ buds of Margelis carolinensis.
all over the stem, resembling in this respect very strikingly the Perigonimus of Sars, to which the Hydrarium also bears a close affinity, from the size of its sterile Polypes.

EUDENDRIUM Ehrenb.

Calamella Oken. Lehrb. der Naturg. Gesch. 1815.
Thea Lamx. Pol. Cor. Flex. 1816.

Eudendrium dispers Agass.

Eudendrium dispers Agass. Cont. Nat. Hist. U. S., IV. pp. 285, 289, 342, Fig. 36; Pl. 27, Figs. 10–21. 1862.

This Hydroid (Fig. 249) is closely allied to the _Tubularia ramea_ of Dalyell and the _Coryne pusilla_ var. _muscoides_ of Johnston. The male and female communities are readily recognized by the different color of the Medusae buds; the male Medusae buds are bright orange, while the females are of a dull pink.

Cat. No. 36, Nahant, July, 1861, A. Agassiz. Hydrarium.
Cat. No. 37, Nahant, July 11, 1861, A. Agassiz.
Cat. No. 38, Naushon, Mass., September, 1861, A. Agassiz.
Cat. No. 405, Nahant, June, 1862, A. Agassiz. Hydromedusarium.
Cat. No. 423, Eastport, Me., A. E. Verrill.
Museum Diagram No. 23.

Fig. 249. Female Medusae buds in different stages of development.
Eudendrium tenue A. Agass.

This species (Fig. 250) can at once be distinguished from the E. dispar Agass. (Fig. 249) by its large clusters of Medusæ, while in the E. dispar the Medusæ buds are always somewhat scattered, and never clustered together, as in E. tenue. This is quite a small species, the tallest specimens hardly rising more than an inch to an inch and a half, while the E. dispar is a large Hydroid, growing in tall stems, branching but little; the E. tenue, on the contrary, forms small colonies of densely crowded individuals, branching profusely. The color is light pinkish.

Massachusetts Bay, Nahant (A. Agassiz); Buzzard’s Bay, Naushon (A. Agassiz).
Cat. No. 402, Nahant, June 17, 1862, A. Agassiz. Hydromedusarium.

Eudendrium ramosum McCr.

Eudendrium ramosum McCr. Gymn. Charleston Harbor, p. 64.

McCrady has identified this species with the English E. ramosum Johnst. Specimens collected at Charleston by Professor Clark certainly show a great similarity to the English species, but it still remains to be proved, as we do not know their development, that these species are identical.

Charleston, S. C. (McCrady).

Fig. 250. A part of a male colony; magnified.
LIZZIA Forbes.

Cytaea Sars (non Esch.). Beskriv., p. 28. 1835.

Lizzia grata A. Agass.

The presence of a cluster of tentacles, intermediate between the chymiferous tubes gives to Lizzia a totally different aspect from that of Bougainvillia, which is the permanent embryonic type of Lizzia. In a young Lizzia this middle cluster is wanting; the character of the development of the tentacles is totally different from that of Bougainvillia; we have an odd tentacle at first (Fig. 252), and then pairs of tentacles (Fig. 253), while in the Bougainvillia we have, for the first set, as well as for the subsequent cycles, a pair of tentacles; so that we may have, as members of the same family, forms in which these clusters are reduced to a minimum, as in Dysmorphosa (Fig. 259), where the odd tentacle alone is developed.

In an adult Lizzia (Fig. 251) the chymiferous cluster of tentacles consists of five, the intermediate cluster of three. The order of succession of the different tentacles in the young stages can easily be traced in Fig. 252; at first there are four long tentacles opposite the chymiferous tubes, flanked by two short tentacles; next the odd tentacle of the middle cluster makes its appearance, and then after some time the other pair of tentacles of the middle cluster. The sensitive bulb of the adult is elongated, polygonal, and thickly covered with pigment-cells (p, Fig. 253); the digestive cavity of the adult (Fig. 254) is nearly as long as the cavity of the bell, into which a short projection of the bell.

Fig. 251. Adult male Lizzia grata, seen in profile; magnified.
Fig. 252. Quarter of the disk of a young Lizzia.
Fig. 253. Magnified view of the sensitive bulb. p, pigment-cells.
extends; the genital pouches are on the sides of the digestive cavity, extending nearly to its extremity. The actinostome terminates in four large lobes, edged with short oral tentacles, surmounted by a knob of lasso-cells; these lips are quite expansive and contractile. (t, t', t", t", Fig. 255.) In the young Medusae the digestive cavity terminates with only four club-shaped tentacles (t, Fig. 256); this soon branches in somewhat older stages, as that of Fig. 252, and assumes the shape of Figs. 257, 258, t, additional club-shaped oral tentacles being added in the order in which they are numbered in Fig. 255.

Massachusetts Bay (A. Agassiz).
Cat. No. 446, Nahant, A. Agassiz. Medusa.

Fig. 254. Proboscis of male Lizzia; magnified.
Fig. 255. One of the four lobes of the actinostome, seen from above. t, t, t', t", tentacles of actinostome.
Fig. 256. Actinal view of the proboscis of a young Lizzia. t, oral tentacle; d, digestive cavity.
Fig. 257. Actinal view of proboscis of an older specimen. a, actinostome; g, genital pouches; t, tentacles of actinostome.
Fig. 258. Abactinal view of Fig. 257, somewhat less magnified, with the oral tentacles in a different attitude; lettering as above.
DYSMORPHOSA Phil.

Podocoryne Sars. Fauna Lit., p. 4. 1846.

Sars has traced the development of a Medusa from *Podocoryne cornea* which is very closely allied to *Dysmorphosa fulgurans* here figured. It corresponds, in its younger stages, while still attached to the proboscis of its parent, to the different stages of our Medusa, in the number, arrangement, and order of appearance of the tentacles, so completely, that I have referred it to the genus Dysmorphosa of Philippi, considered by Sars as identical with the Hydroid from which his Medusa was developed. This identification is the more probable, as Krohn has given us a complement to the observations of Sars on the adult Medusae, and traced the budding from the proboscis in exactly the same manner as it is here given. The Lizzia figured by Claparède in the tenth volume of Siebold u. Köllicher's Zeitschrift, in which he has also traced the budding from the proboscis, appears to be identical with the *Podocoryne cornea* of Sars.

Dysmorphosa fulgurans A. Agass.

This Medusa (Fig. 259) is sometimes so abundant that the whole sea, when disturbed, is brilliantly lighted by the peculiar bluish phosphorescent color which they give out. Their great number is easily accounted for by their mode of reproduction and by its rapidity. Young Medusae are formed by budding on the upper extremity of the proboscis (Figs. 259, 260), and their development takes place in the course of three or four days; from three to four Medusae develop at the same time; the Medusae buds of the third generation are already forming, while the second is still attached. (Fig. 260.) The young Dysmorphosa has at first four tentacles, the middle set developing later; there are only four oral tentacles, quite long and slender, and an accumulation of pigment-

![Fig. 259. Adult Dysmorphosa; magnified.][1]
![Fig. 260. Magnified proboscis, showing young Medusae of the second and third generations.][2]
cells at the base of the tentacles; the abactinal part of the bell is quite conical (Fig. 259); the tentacles of the adult Medusa are usually carried rather stiffly (Fig. 260); but when the young Medusa is still attached, they are frequently expanded several times the diameter of the bell. (Fig. 260.) This Medusa resembles very much the young of Turritopsis nutricula, and could readily be mistaken for it. It would be most natural, therefore, to place this genus in the family of Nucleiferæ; but the presence of the peculiar oral tentacles of Lizzia, added to the fact that this is probably only a permanent embryonic stage of Lizzia, induces me to place it among the Bougainvillidæ.

Allman describes, in the fourth volume of the Ann. & Mag. of N. H. for 1859, page 368, a Medusa as developing from Laomedea tenuis, which resembles so strikingly Lizzia and Dysmorphosa that I suspect there must be some error in his observation. Does it not rather come from his Dycyone stricta, which he found at the same time and at the same place, and which would thus bring this Medusa, intermediate in its characters between Lizzia and Dysmorphosa, to its proper place among the Bougainvillidæ?

Massachusetts Bay, Nahant (A. Agassiz); Buzzard's Bay, Naushon (A. Agassiz).

Family NUCLEIFERÆ Less.

Oceanides Esch. (p. p. non Agass.). Syst. der Acal., p. 96. 1829

TURRIS Less.

Oceania Auct. (p. p. non Agass.). Medusa.

Clavula Wright. Hydra.

Turris vesicaria A. Agass.

This Medusa I formerly supposed to be the *Medusa digitalis* of Fabricius; it certainly is not that of Forbes. Since that time I have ascertained that the *Medusa digitalis* of Fabricius belongs to a different family, the Trachynamidae. (See page 57.) It has been found but once at Nahant, in the early part of the spring, and probably
having habits similar to those of Tina, it is only accidentally met with. It has very much the same kind of coloring as our Tina, but in Turris the color of the genital organs and the base of the tentacles is somewhat more yellowish. The bell of Turris is exceedingly thin, except at the abactinal pole (Fig. 261), where it forms a sort of bladder, capable of more or less contraction at its base; when the Medusa is disturbed, the sides of the bell, below the bladder, contract, and give it a polygonal outline, as is seen in Fig. 262. The genital organs remind us somewhat of those of Ptychogena, only they are attached to the abactinal part of the interior of the bell; passing in

Fig. 261. Turris vesicaria, natural size; seen in profile.
Fig. 262. The same, with the bell contracted.
Fig. 263. A portion of the disk, seen from the abactinal pole. a, opening of actinostome ; g, point of attachment of the convoluted genital organs to the inner surface of the bell ; c, chymiferous tubes; c', continuation of convolution of genital organs, forming the sides of the chymiferous tubes.
Fig. 264. Magnified profile view of genital organs and actinostome. l, lips of actinostome; g', convoluted genital organs, extending from one side of the bell to the other; g, part of the genital organ on the other side of the chymiferous tube; c', as in Fig. 263; v, base of bladder surmounting the bell.
deep festoons (Fig. 263) from one chymiferous tube to another; they form a compact mass, and fill the whole of the upper part of the bell; from this are suspended four movable, deeply-frilled lips (\(l \), Fig. 264), leading into a short digestive cavity totally concealed by the genital organs. The chymiferous tubes are broad and very flat, the two edges of the tubes being irregularly cut (Fig. 205); transverse folds extend from one side to the other; the chymiferous tubes open into a broad circular tube (Fig. 266), having a similar hacked edge; with the circular tube communicate five tentacles placed between the chymiferous tubes, and one opposite each. The tentacles are broad at the base, and taper very rapidly into a long slender lash; at the base of

the bag of the tentacles is a large swelling, in the centre of which is placed a distinct eye-speck. (Figs. 266, \(e \); 267, 268.) The size of the opening, leading from the circular tube to the tentacle, is readily seen when examined from the abactinal side. (Figs. 263; \(o \), 268.) In the genera Turris, Ptychogena, Olindias of Müller, and Polyorchis, we have strongly developed characters, which show their close relation; in Turris and Ptychogena, the nature of the genital organs and the character of the chymiferous tubes; in Olindias and Polyorchis, the genital organs and branching tubes, being simply extreme cases of what we have first hinted at in Turris, more strongly marked in Ptychogena, in the mode of attachment of the genital organs, and

Fig. 265. Magnified view of a part of a chymiferous tube.
Fig. 266. Base of one of the chymiferous tubes, and part of the circular tube. \(c \), chymiferous tube; \(c' \), circular tube; \(b \), sensitive bulb of tentacle; \(e \), eye-speck; \(l \), lash of the tentacles covered with lasso-cells.
Fig. 267. One of the tentacles in a semi-profile view.
Fig. 268. One of the tentacles, seen from the abactinal pole. \(o \), opening leading from circular tube.
carried out in a very different direction in the genital pouches on the pendent proboscis of Stonotoca.

Massachusetts Bay, Nahant (A. Agassiz).
Cat. No. 274, Nahant, Mass., May 12, 1862, A. Agassiz.

TURRITOPSIS McCr.

Turrilopsis nutricula McCr.

Turrilopsis nutricula McCr. Gymn. Charleston Harbor, p. 25, Pls. 4, 5, 8, Fig. 1.

The young Medusae have only four stiff tentacles, with a long bottle-shaped digestive trunk (Fig. 269), fastened by its base to the lower part of a short prolongation of the bell, along which the chymiferous tubes run; the digestive cavity has four marked prolongations, surmounted by bunches of lasso-cells; along the upper part of the digestive cavity, the genital organs are developed in four bunches, placed along the prolongations of the actinostome. As the Medusae increase in size, there are four more tentacles formed, one in the middle of the space between the chymiferous tubes; the genital organs increase in length, and by the time two additional tentacles (3, Fig. 270) have been formed, one on each side of the tentacles of the second cycle, the genital glands have become very much swollen, and occupy nearly the whole length of the digestive cavity and proboscis. With advancing size the gelatinous mass loses its bell shape, and becomes more globular, the tentacles (then sixteen in number) losing somewhat their stiffness; when it has only four tentacles, the young Medusa resembles so much Sarsia, in the shape of the bell and of the digestive cavity, that were it not that Sarsia carries its tentacles curled up close to the circular tube, while in Turritopsis they stand stiffly out from the rim of the bell, like the tentacles of Eudendrium, it would be difficult to distinguish them apart. Not having traced this Medusa beyond the stage when it had sixteen

Fig. 269. Young *Turrilopsis nutricula*, with four marginal tentacles; greatly magnified.
Fig. 270. Somewhat more advanced *Turrilopsis*, having sixteen tentacles.
tentacles, I am unable to determine whether it is a distinct species from the Turritopsis of Charleston; the color of the proboscis and of the sensitive bulb is different in the two; the ovaries are light brown, with darker lines in the furrows between them; the ocelli are dark-red brown. The shape of the tentacles and of the bell, however, are the same in both, as well as their habits, and the changes which this Medusa goes through with advancing age. From each side of the base of the four tentacles, at the junction of the circular and of the chymiferous tubes, runs a thread of bunches of lasso-cells, which reach nearly to the abactinal pole, as in the young Medusae of many of the Tubularians.

There is found at Nahant the young of a species of Turritopsis which differs from the Turritopsis nutricula very essentially; the bell, which is remarkably thin, has a uniform thickness from the circular tube to the abactinal pole; the tentacles, even when there are only four, are quite long, slender, and usually carried curled up along the sides of the bell, giving these young Medusae a totally different aspect from the young of the T. nutricula. I might mention here that the trace of its connection with a Hydroid stock was very distinct in young Medusae; the adult Medusa was not observed.

Charleston, S. C. (McCrady); Naushon, Buzzard's Bay (A. Agassiz).
Cat. No. 273, Naushon, September, 1861, A. Agassiz. Medusa.

STOMOTOCA Agass.

Saphenchia Forbes (now Esch.). British Naked-eyed Medusa, p. 25. 1848.

Stomotoca apicata Agass.

Saphenchia apicata McCr. Gymn. Charleston Harbor, p. 27, Pl. 8, Figs. 2, 3.

Charleston, S. C. (McCrady); Newport (A. Agassiz).
Cat. No. 454, Newport, A. Agassiz. Medusa.

Stomotoca atra Agass.

This Medusa (Fig. 271) is much larger than the one Forbes has described as *S. diminuta* (Naked-eyed Medusa, Pl. II. Fig. 4), which measures only a quarter of an inch, while this species is from three quarters to an inch in size; it is much less elongated, the vertical and horizontal diameters being the same; it swells out to its greatest horizontal diam-
eter almost immediately above the circular tube, where it curves in slightly, and then bends uniformly towards the abactinal pole; the upper part is almost hemispherical, being very blunt at the abactinal pole; the peduncle tapers gradually from the base to the ovaries; the ovaries are barrel-shaped, extending to the digestive cavity, which is small at the point where the chymiferous tubes empty into it, but gradually bulges out, and passes into the lobes of the actinostome, where it is three or four times as wide as at the base. Only two of the chymiferous tubes have long tentacles; between these larger tentacles there are a number of small tentacles (in the specimen described above eighty), hardly one sixteenth of an inch long. The ovaries are placed on the abactinal extremity of a long peduncle; they consist of a double series of folds, occupying the middle third of the peduncle (Fig. 272), and are of a dark-brown color; below them is placed the digestive cavity, which is very contractile, of a lighter color, and end-

Fig. 271. Stomotoca atra, somewhat magnified; seen in profile.
Fig. 272. Magnified view of genital organs.
Fig. 273. Stomotoca atra, in a different attitude.
RHIZOGETON AGASS.

Rhizogeton fusiformis Agass.

CLAVA GMELIN.

Clava leptostyla Agass.

The Clava leptostyla (Fig. 274) seems to differ from the C. multicornis by the greater number of its tentacles.

Point Judith (Leidy); Massachusetts Bay (Agassiz).

Fig. 274. Clava leptostyla; greatly magnified.
Family WILLIADÆ Forbes.

WILLIA Forbes.

Willa Forbes.

Willa ornata McCr.

The development of *Willa* presents some striking differences from the mode in which tentacles are regularly developed in successive cycles among Polyps, and from what has been observed, in accordance with that mode of development, among some of our naked-eyed Medusæ (*Laomedea diaphana*, *Clytia bicophora*, etc.). In very young *Willa*, having only four simple chymiferous tubes and four tentacles,—two much longer than the others, as we find them in *Atractylis* and *Lafoea*,—there are soon developed four additional tentacles; these do not appear in the middle between the adjoining chymiferous tubes, but about one third of the distance. (Fig. 274.) When this second cycle of tentacles can be readily distinguished as four well-marked knobs along the circular tube, an offset branches off from the simple chymiferous tube, which soon extends to the circular tube, opposite the rudimentary tentacle; this offset takes its origin at two thirds the length of the chymiferous tube from the circular tube; at the same time this branch is forming, the main tube is slightly bent in the opposite direction from that in which the branch diverges; the offset

Fig. 274. Youngest *Willa* observed, having only the second set of tentacles developed. 2, second set of marginal tentacles; 2c, branch of chymiferous tubes leading to them.

Fig. 275. A young *Willa*, nearly in the stage of Fig. 276, seen from the abactinal pole. 3, third set of tentacles; 3c, chymiferous tube leading to them.
also is slightly convex, the convexity being turned towards the circular tube. The next cycle, the third, consists only of four tentacles, which all make their appearance on the other side of the main chymiferous tube, just as far on the other side as the tentacles of the second cycle were on this side of the main radiating tube; the offsets of the tube which reach these tentacles start slightly below the first, and are likewise bent towards the circular tube. I was not able to observe the formation of the additional branches and tentacles. I refer this species at present to the *Willia ornata* of McCrady found at Charleston, the specimens which I found (Fig. 276) not being advanced enough to enable me to determine their difference or identity. The tubes which contain the clusters of lasso-cells (*l*, Fig. 279), running in the thickness of the spherosome from the circular tube to the height of the base of the digestive cavity, were particularly well defined; the longer tubes, extending in the middle of the space between two chymiferous tubes, contain three clusters of lasso-cells, made up of from four to five large cells arranged in a circle. Even at this early stage the ovaries were well developed (Figs. 277, 278); they are elliptical bunches placed on

Fig. 276. Profile view of a young *Willia*; magnified.

Fig. 277. Part of the circular tube. *l*, tubes running into the thickness of the spherosome, containing large lasso-cells.

Fig. 278. View of ovary of Fig. 276.

Fig. 279. The same as Fig. 278, seen from the abactinal pole.
both sides of the cross-shaped edges of the digestive cavity, giving it a quadrangular appearance, when seen from above. (Fig. 279.) Found at Naushon the last part of September, one tenth to one eighth of an inch in diameter.

Charleston Harbor (McCready); Buzzard’s Bay, Naushon (A. Agassiz).

PROBOSCIDACTYLA BRANDT.

Proboscidactyla Brandt; in Mém. Acad. St. Petersburg, II. p. 228. 1835.

Proboscidactyla differs from Willia in the mode of branching of the chymiferous tubes; in the former genus each main chymiferous tube divides into two halves, branching symmetrically on both sides from the two main branches, which is not the case in Willia.

Proboscidactyla flavicirrata Br.

This small Medusa seems quite uncommon in the Gulf of Georgia. I only found a couple of specimens, in the latter part of June, near Galiano Island. They are so small and so transparent that it requires the utmost attention to discover them. It seems to be the species found by Brandt on the coast of Kamtschatka; he was unable to find any actinostome in the trunk-like prolongation (Fig. 280), which he represents as surrounded by a large number of small tentacles; the digestive cavity opens by an actinostome, surrounded by four large lobes, and these subdivide into a number of smaller lobes, subordinate to the larger ones. (Fig. 281.) The ovaries are attached to the abactinal extremity of the chymiferous tubes, and extend but a short distance towards the periphery along the four radiating tubes (Fig. 281); the chymiferous tube runs single for a short distance, before the principal division into two branches takes place (b, Fig. 282); at the point of meeting of each of the smaller branches with the circular branch, there is a very marked eye-speck; the tentacles are numerous, each

Fig. 280. *Proboscidactyla flavicirrata*; magnified.

Fig. 281. Actinostome and digestive cavity.
chymiferous tube dividing into two main branches, and each branch subdividing again into eight, making in all sixty-four branching tubes, and as many tentacles and eye-specks. Between each of the ocelli there extends from the circular tube a small tube penetrating into the thickness of the edge of the spherosome, which projects a considerable distance beyond the circular tube. The color of the digestive cavity is dirty yellow, the tentacles are of a brilliant straw color, and the ocelli dark blue. The whole exterior of the spherosome is densely granulated, the projections being probably something similar to what we find on the disk of Aurelia flavidula, made up of large lasso-cells, only much more densely crowded together. The shape of the bell is almost perfectly thimble-shaped, there being neither bulging nor striking indentations of the periphery. The motions of this Medusa are very rapid; the tentacles are capable of but little contraction.

Fig. 282. Portion of disk, to show the mode of branching. b, first fork; i, tubes containing lasso-cells, as in Willia.
Family SARSIADÆ Forbes.

CORYNE GÄRT.

Coryne mirabilis Agass.

Coryne mirabilis Agass. Cont. Nat. Hist. U. S., IV. pp. 185–217. Figs. 9–31; Pl. 20, Figs. 1–9; Pl. 23r, Fig. 12; III. Pl. 11r, Figs. 11, 15; Pls. 17–19. 1860–62.
Sarsiadæ glacialis Mörch; in Beskriv. af Grønland, p. 95. 1857.

This Medusa (Figs. 283, 284, 285) is one of the earliest visitants of our wharves. The ice has scarcely gone from the shores when numbers of young Medusæ, just freed from the Hydrarium, swarm near the surface on any sunny day. Captain Couthouy has described, under the name of Tubularia stellifera, a Hydroid which is probably the Hydroid of our Sarsiadæ mirabilis; as the specimens from which his descriptions were made have not been pre-

Fig. 283. Adult Coryne mirabilis, seen in profile; one half natural size.
Fig. 284. Coryne mirabilis, with proboscis contracted. t, tentacles; e, veil; c, circular tube; o, actinostome.
Fig. 285. Coryne mirabilis, with expanded proboscis. d, proboscis; a, b, thickness of the bell.
served, I am unable to state this positively. It seems to make but little difference to the Hydrarium (Figs. 286, 287, 288) or to the Medusa whether they live in pure sea water, such as they find at Nahant, or live in the more brackish waters of the inner harbor of Boston; they are equally abundant in both localities.

Massachusetts Bay (L. Agassiz).
Cat. No. 64, Nahant, March, 1862, H. J. Clark. Hydrarium.
Cat. No. 268, Boston, April, 1862, A. Agassiz. Young Medusae.
Cat. No. 269, Boston, May, 1862, A. Agassiz. Young Medusae.
Museum Diagrams, No. 20, 21, after L. Agassiz.

Coryne rosaria A. Agass.

I have but little doubt that the Hydroid here described is the larva of Coryne rosaria; this settles any doubt there may be concerning the specific differences between this Medusa, and the European or American representatives on the two sides of the Atlantic. The Hydrarium resembles somewhat Coryne stipula of Sars, but the proportions of the individuals of these two Hydraria are totally different; what is particularly characteristic of Coryne stipula is the stoutness and great size of the head and stem, compared to the size of the community; in Coryne rosaria the heads, which are quite slender, are supported by remarkably long and attenuated stems; they branch also very profusely, and it is not uncommon to find communities of this graceful Coryne reaching a height of three to three and a half inches. Medusae buds were

Fig. 286. Cluster of Hydraria of Coryne mirabilis.
Fig. 287. Young Hydrarium.
Fig. 288. Magnified view of a head with Medusa bud, d, attached.
observed on the Hydrarium in March; no young Medusae have been observed; the adults attain an enormous size, measuring more than an inch in polar diameter, as in Fig. 289, which is drawn the natural size.

The spherosome bulges very rapidly from the abactinal pole (Fig. 289) till it reaches the point of junction of the chymiferous tubes; from there it tapers very gradually towards the peripheric tube; the chymiferous tubes are exceedingly slender, the digestive cavity very long, projecting one half its length beyond the circular tube, swelling near the lower extremity, and then suddenly contracting, tapers gradually, in the form of a conical projection, beyond the ovaries; the sensitive bulbs are large, the eye-specks small. The proboscis and the tentacles are of a dirty-yellow color, the color of the swelling of the proboscis and of the sensitive bulbs being somewhat darker. It resembles Sarsia tubulosa of the English coast more than Sarsia mirabilis of New England. Found in the Straits of Rosario in May, and as late as the beginning of July in the Gulf of Georgia, W. T., and also in the harbor of San Francisco during November.

SYNDICTYON A. AGASS.

Syndictyon reticulatum A. Agass.

The Hydrarium (Fig. 290) resembles that of *Coryne mirabilis*; it is much smaller, not being more than one tenth of an inch in height; it does not branch, or only occasionally once, near the base, in very old specimens. The stem is slender, the head large, club-shaped, the tentacles short, eight or ten in number. The Medusae develop among the tentacles in the lower part of the head; this development is similar to that of *Sarsia*; when the Medusa is separated it is nearly as large as the whole Hydrarium, measuring about one sixteenth of an inch in

Fig. 289. *Coryne rosaria, natural size.*
diameter. The young Medusae resemble somewhat Zanclea (Fig. 291), having the lasso-cells of the marginal tentacles arranged spirally in large clusters on the surface of the tentacles; the more advanced Medusae lose this character. The bunches of lasso-cells increase in size towards the extremity, where the tentacle terminates in a club-shaped bunch (Fig. 292) larger than the others; the sensitive bulb is large, the ocellus at the base of the tentacle (Fig. 293) is similar to that of Sarsia, the spherosome is of a uniform thickness, and the proboscis (Fig. 294) resembles somewhat that of Dipurena; the whole surface of the spherosome is covered with clusters of large lasso-cells (Fig. 296), giving it a granulated appearance; the ground-work consists of minute granulation, which appears under a low magnifying power to be arranged
in rows parallel to the circular tube, upon which are scattered large lasso-cells. The actinal and polar axes are of about the same length; the veil is well developed (Fig. 295); the central part of the spherosome is uniformly arched outside; the curve of the inner cavity is concentric with it; the proboscis extends somewhat more than half the length of the height of the cavity of the bell; the circular and chymiferous tubes are narrow (Fig. 296), of uniform diameter throughout; the sensitive bulb is ovoid, with a well-defined lenticular-shaped concentration of black pigment-cells (Fig. 293); the bulb itself is colored light-brown; the walls of the tentacles are thick, the tentacular tube tapering rapidly as it nears the extremity of the tentacle, where the walls increase in thickness in proportion as the tube diminishes in bore; the bunches of lasso-cells begin at some distance from the base of the tentacle (one fourth of the length of the tentacle), increase rapidly in size, being packed closer and closer towards the extremity of the tentacle, where they are large crescent-shaped masses, almost touching each other, and composed of very elongated lasso-cells. (See Fig. 292.) The tentacles are not very contractile; usually they are about as long as the vertical diameter of the bell, and I have seen them contracted to about half that length; the peduncle is not contractile. The large lasso-cells of the surface of the spherosome (Fig. 297) are round; they are usually scattered singly over the whole surface, while the fine granulation of the surface of the bell consists of long, narrow cells, dividing into smaller granules, which are small, undeveloped lasso-cells, forming a net-work over the surface of the spherosome; the lasso-cells are not as numerous near the abactinal pole as towards the margin of the bell, above the circular tube. The motions of the Medusa are similar to those of Sarsia, the bell, owing to its thinness, being, however, much more flexible. The bell has a very light metallic-blue tinge. The Hydroid was found growing on Diphasia rosacea. Young Meduse, similar to those developed from the Hydroid, are found swimming freely about during June and July.

The young Medusa described above gradually loses the characters which distinguished it from Sarsia, and as it becomes more advanced, it resembles so closely Sarsia, that were it not for the invariable
presence of the light reddish-brown eye-specks, which become red in the adult, it would be difficult, without very close examination, to distinguish them apart. The tentacles of the adult (Fig. 298) are not as long as those of Sarsia; they are likewise capable of much greater contraction, being often carried in a club-shaped form, not longer than half the vertical axis of the bell. (Fig. 299.) The actinostome is also very different; the lips (four in number) are quite prominent (a', Fig. 300), though often carried in trumpet fashion, at

the extremity of the digestive cavity (a, Fig. 300), and the spherosome increases greatly in thickness at the abactinal pole.

Massachusetts Bay, Nahant (A. Agassiz).
Cat. No. 378, Nahant, 1863, A. Agassiz. Medusa.

DIPURENA McCr.

McCrady established this genus from an investigation of two species of Medusae, which, though having all the characteristics of _Slabberia_ of Forbes, yet differed from it in the position of the sexual organs, which are placed in _Dipurena_ along the digestive trunk, as in _Sarsia_ and the like, while in _Slabberia_ Forbes has figured genital organs along the

Fig. 298. Adult Medusa, in a natural attitude.
Fig. 299. The same Medusa as Fig. 298, with the tentacles contracted.
Fig. 300. Actinostome of adult Medusa. _a_, when protruded, trumpet-shape; _a'_, showing the lips of actinostome.
chymiferous tubes. This is so contrary to what we have thus far found to be uniformly the position of these organs among Tubularian Medusae, that there is probably some mistake in Forbes's drawing.

Dipurena strangulata McCr.

Dipurena strangulata McCr. Gymnoph. of Charleston Harbor, p. 33, Pl. 9, Fig. 1.

Charleston, S. C. (McCready).

Dipurena cervicata McCr.

Dipurena cervicata McCr. Gymn. Charleston Harbor, p. 34.

Charleston Harbor (McCready).

Dipurena conica A. Agass.

In the young Medusa the shape of the bell is nearly sugar-loaf (Fig. 301); the cavity of the bell is formed by a similar cone, with rounded apex; the disk diminishes rapidly in thickness towards the circular tube; the digestive cavity does not extend quite to the level of the veil; it is divided by a constriction into two unequal cavities, the upper one (\(u\), Fig. 302) being about half the size of the lower one (\(l\), Fig. 302); the walls of this cavity are thick, tapering gradually towards the actinostome, which is a simple opening, without labial appendages; the digestive cavity is scarcely contractile; the four marginal tentacles are short, the sensitive bulb is large, consisting of minute granular cells, the eye-speck being placed in a small button, standing out slightly from the base of the tentacle on the upper side (the abactinal side). (Fig. 303.) The walls of the tentacles are thick; they are made up of large elongated polygonal cells, giving the tentacles a striated appearance; the tube running through the tentacles is exceedingly fine, expanding slightly towards the extremity, where it joins the cavity of the terminal club; the large polygonal cells of the tentacle decrease in size towards the extremity, where there is a crescent-

Fig. 301. Young *Dipurena conica*; magnified.

Fig. 302. Digestive cavity of a young *Dipurena conica*. \(u\), the upper part; \(l\), the lower.
shaped row of large elliptical cells surrounding the upper end of the terminal cavity, these cells being surmounted by a thick coating of small granular cells, extending along the surface of the tentacle until they gradually disappear; these granular cells are pigment-cells, giving the terminal club a reddish tinge; the sensitive swelling at the base of the tentacles is colored by similar cells, the eye-spot being black.

This species differs from the Dipurena strangulata in the form of the bell, the proportions of the digestive cavity and of the terminal clubs of the tentacles, as well as the shape of the sensitive bulbs; according to McCrady, they are exceedingly pointed in D. strangulata, while the sensitive bulb of D. conica widens as it approaches the circular tube. The largest specimens taken were one sixth of an inch in diameter; smaller specimens, not more than an eighth of an inch, differed greatly from the more advanced. The bell is almost globular, of uniform thickness; the digestive cavity is short and rectangular in shape. As the young advance in age, the spherosome becomes more and more bell-shaped, and then conical; as the digestive trunk increases in length, it contracts near the base, and becomes pear-shaped towards the extremity. When still quite young, the first appearance of the constriction becomes visible; larger and older specimens, measuring one fourth of an inch, have a digestive cavity divided into two cavities, separated by a constriction, as in Fig. 304, where this separation has become quite prominent; when the Medusa is in violent motion, the proboscis will assume a quadrangular shape, with a large four-sided opening; this flexibility of the actinostome is lost in older specimens. In the oldest specimens which have been found (Fig. 305), the separation between the upper and lower part of the digestive trunk has become such, that the

Fig. 303. Tentacle of Dipurena conica.
Fig. 304. Digestive cavity of a specimen in which the constriction has already separated the upper and lower halves.
Fig. 305. Adult Dipurena conica, in which the two digestive cavities are widely separated; greatly magnified.
two parts are simply connected by a narrow tube as long as the digestive cavities themselves; the narrow tube leading to the first digestive cavity extends to the level of the veil; the radiating tubes and the circular tube are thin, but there is no difference in the shape of the bell and of the tentacles of the different stages observed.

Buzzard's Bay, Naushon (A. Agassiz).
Cat. No. 439, Naushon, July, 1864, A. Agassiz.
Museum Diagram, No. 20, after A. Agassiz.

Family ORTHOCORYNIDÆ A. Agass.

I have ventured to separate the genus Zanclea from the Pennaridæ, with which it had been associated by McCrady and Professor Agassiz, and to form a new family, on account of the observations of Allman on the development of Zanclea from its Hydroid, Coryne impressa Ald. The peculiar form of the Hydrarium, and the still more remarkable characters of the Medusa, with their tentacles bearing pedunculated knobs of lasso-cells, separate them from the square Meduse of the Pennaridæ, while they remind us somewhat of the embryonic stages of Syndictyon. From the resemblance of this Hydroid to Halocharis and to Candelabrum, as well as owing to the close affinities of Corynitis to Zanclea, I would propose to unite all these forms into one family, the Orthocorynidae. Does not also the Heterocordyx Conybearei belong to this family? The great difference between the reproductive and the sterile individuals is another example of the polymorphism so remarkable in Hydractinia.

CORYNITIS McCr.

Corynitis Agassizii McCr.

Charleston, S. C. (McCrady).
GEMMORIA McCr.

Gemmaria gemmosa McCr.

McCready has distinguished with reason the genus *Gemmaria* from the *Zanclea* of Gegenbaur. The form of the bell of the digestive cavity and of the tentacles are totally different in the two genera. Very young specimens (Fig. 306) of this species, observed at Naushon, differed essentially from the *Gemmaria cladophora* of Massachusetts Bay, in the character of the tentacles and the shape of the clusters of lasse-cells; in the present species, the clusters of lasse-cells are attached by a short peduncle, and are arrow-shaped; the great tensity of the bell in the specimen here figured is a characteristic of the younger stages, which disappears in older specimens. (See McCready's figures.)

Charleston, S. C. (McCready); Buzzard's Bay, Naushon (A. Agassiz).

Gemmaria cladophora A. Agass.

The shape of the inner bell of the adult Medusa of this species is peculiar; the outline does not follow that of the outer bell (Fig. 307),
but is curved in the opposite direction; near the upper bend of the chymiferous tubes, it runs up into a point, making a sharp and deep groove round the projection of the spherosome; the chymiferous tubes (c', Fig. 308), as well as the circular tube, are very broad (Fig. 308), opening into a conical digestive cavity, which at its base occupies nearly the whole width of the upper part of the inner bell; this cavity tapers gradually till it reaches the level of the veil, where the edges flare a little; the extremity of the proboscis has a tendency to be slightly drawn in, so that the opening of the cavity is flanked by the pouches formed by the partial contraction of a portion of the walls; the walls are thick, and open into a quadrangular mouth (Fig. 309), surrounded by a couple of concentric rows of large lasso-cells; similar large cells extend on the outside of the chymiferous tubes, more than half-way up the spherosome. (Fig. 308.)

The tentacles are broad and thick, two of them being more developed than the others (Fig. 307); they are of a light-brown color, with orange pigment-cells at the base; the knobs of lasso-cells are attached to quite long stems (Fig. 310); the walls of the digestive cavity are thick; the ovaries are placed in the upper part of the proboscis. Found at Nahant in the beginning of August. When at rest, the tentacles are stretched out very obliquely from the bell, and they often remain perfectly motionless in this position; the Medusæ are quite rapid in their movements. (Fig. 307.)

Professor Clark discovered at Nahant a Hydroid closely resembling the Coryne impexa of Alder, and which I suspect will prove to be the nurse of our Gemmaria; this would be in accordance with the observations of Allman on the development of Zanclea from Coryne impexa.

Massachusetts Bay, Nahant (A. Agassiz).
Cat. No. 363, Nahant, 1862, A. Agassiz. Medusa.

Museum Diagram, No. 20, after A. Agassiz.

Fig. 308. Quarter of the disk of G. cladophora, seen from the abactinal pole. c, circular tube; c', chymiferous tube; b, sensitive bulb, having a great accumulation of pigment and lasso cells extending along the chymiferous tubes; c", opening leading into the chymiferous tubes from the digestive cavity. o; g, g, genital organs; g', fatty globules at base of proboscis.

Fig. 309. Actinostome of Gemmaria, enlarged.
Fig. 310. Cluster of lasso-cells of the marginal tentacles.
That family is restricted here to the single genus Pennaria, Zanclea having been removed from this family since the discovery of its development from a Coryne-like Hydrarium by Allman.

I have not given to the Globiceps tiarella of Ayres a new generic name, although it is probable that it does not belong to the same genus as the Pennaria gibbosa Agass., as the development of the latter species requires renewed examination to decide the question.

PENNARIA GOLDF.

Pennaria Goldf. (non Oken). Handb. der Zoologie, p. 89. 1820.
Pennaria tiarella McCr.

The Medusa of Globiceps tiarella is one of the most remarkable of our naked-eyed Medusae. As in the Sarsiidae, the Medusa bud is formed among the tentacles (Fig. 311), between the whirl of large and small tentacles; the mode of development of the bud is similar to that of Coryne and Bougainvillia; the chymiferous tubes, however, never have the extraordinary thickness which is noticed in Sarsia, and the cavity of the bell is hollowed out at an earlier period; the Medusa bud gradually becomes very elongated as it becomes more mature.

Large white eggs are developed from the proboscis, filling the whole cavity of the bell as they increase in size, and giving the Medusa an opaque milky appearance; the walls of the spherosome become thinner and thinner, and when the Medusa bud has attained its full development, and is ready to be separated, the walls have become so thin that the Medusae are almost always distorted, either on one side or the other, by the eggs or bunches of spermares which have reached such a great size that four or five of them completely fill the inner cavity, at the same time press the sides outward, wherever one of the large eggs happens to be placed (c, Fig. 312); two or three of the eggs generally escape before the Medusa bud is liberated, and when they are found detached, the cavity of the bells usually does not contain more than one or two large eggs; folds appear on the inner surface of the cavity of the bell after the eggs have escaped.

Fig. 311. A fertile Hydra of Pennaria tiarella, showing the mode of budding; magnified.
Fig. 312. A Medusa distended by an egg, e; magnified.
Fig. 313. Profile view of Medusa of Pennaria tiarella; magnified. f, folds produced by the distension of spherosome.
owing to their distension \((f, \text{Fig. 313})\); as soon as the eggs have all escaped, and the Medusa have become detached, they move about with great activity, their motions resembling the quick, restless movements of Sarsia.

The size of the free Medusa is about one sixteenth of an inch; the walls of the spherosome are so thin that the Medusa will often assume a quadrangular or octagonal outline (Fig. 314), with deep indentations between the chymiferous tubes (Fig. 315); the digestive trunk is short, bottle-shaped, not extending more than half the length of the inner cavity of the bell; it is suspended by the narrow part (Fig. 313), the connection of the digestive cavity with the Hydrarium dividing the abactinal part of the bell in such a way that when seen in profile there are two circular masses above the chymiferous tubes. As the Medusa grows older, this open connection does not seem to diminish, as it does in the Sarsiidae, Bougainvilleae, and others. The chymiferous tubes, four in number, are broad, running almost perpendicularly, after making a sharp bend at the top, from the abactinal pole to the circular tube; there are also four well-developed sensitive bulbs; the tentacles on the contrary remain always in a rudimentary condition (Fig. 313), being simply four small knobs scarcely projecting beyond the general outline of the bell; the opening of the veil is small.

What becomes of the Medusa after the eggs have escaped, I am not able to say, though I am inclined to think that they do not undergo changes of any importance, as I have kept them in confinement for three weeks without noticing any striking differences. The color of the Medusa, when freed from its eggs, is of the most delicate rose color; the digestive trunk and the chymiferous tubes are a little darker, and a line of rich crimson pigment-cells, running almost their whole length, makes this Medusa one of the most brilliantly colored of our coast. Found at Naushon, during the month of September.

Buzzard’s Bay (Ayres, A. Agassiz); Massachusetts Bay (A. Agassiz); New Jersey (Leidy); Charleston, S. C. (McCready).

Fig. 314. A different attitude of the Medusa, seen from the actinal pole.
Fig. 315. Fig. 313, seen from the abactinal pole.
TUBULARIADÆ

Cat. No. 23, Newport, R. I., Prof. J. Leidy. Hydromedusarium.
Cat. No. 24, Newport, R. I., S. Powell. Hydromedusarium.
Cat. No. 407, Nahant, September, 1862, A. Agassiz. Hydrarium.

Family TUBULARIADÆ Johnst.

EUPHYSA FORBES.

The outline of the bell of this genus is entirely different from that of Corymorpha or of Hybocodon. It can at once be recognized by its quadrangular shape, and the great thickness of the spherosome above the base of the digestive cavity, which is short and cylindrical. The tentacles also are always short and hollow, but are developed in the same proportion as in Corymorpha,—one stout triangular one, a pair somewhat less advanced, and an odd rudimentary one; the large tentacle never attains the size which it does in Hybocodon or in Corymorpha. The pigment bands at the base of the tentacles are quite short, and extend but little way along the chymiferous tubes. The ovaries are placed on the sides of the proboscis; the bell is symmetrical.

Euphysa virgulata A. Agass.

This Medusa attains a size of about half an inch; the polar diameter is nearly one third greater than the actinal (Fig. 316); the proboscis (Fig. 317) is short, not more than half the length of the inner bell (Fig. 316); the veil is slightly indented (Fig. 318); the tentacles (t, t', Fig. 318) are triangular, and covered with large granules of a milky color, with a band of intensely pink pigment-cells extending a short distance (p, Fig. 319) along the chymiferous tubes, from the base of the tentacles; the proboscis is cylindrical, of a light yellow color, with a perfectly smooth actinostome, and fatty globules generally accumulated at the base (g, Fig. 317), as in Corymorpha and Hybocodon.
The Medusa is exceedingly active, moving very rapidly and incessantly. Found at Nahant in the latter part of August.

Euphysa is not, as Professor Agassiz has stated, the generation of Medusa which become separated from the base of the reproducing tentacle in Ilybocodon. That generation of Medusa are identical with the parent Medusa, as well as the second generation which bud from the large tentacle of this first set of Medusa.

Massachusetts Bay, Nahant (A. Agassiz).
Cat. No. 452, Nahant, A. Agassiz.

ECTOPLEURA AGASS.

In this genus I would include those species of the genus Sarsia (like Oceania telostyla Geg., Sarsia turricula McCrady, and Sarsia gemmifera Forbes) which have a short digestive trunk, and in which the pigment-cells are not concentrated in one mass in the sensitive bulb, but are scattered irregularly through the whole swelling at the base of the tentacles.

Fig. 316. Euphysa virgulata, seen in profile; magnified.
Fig. 317. Proboscis of Euphysa. a, actinostome; o, ovaries; g, fatty globules; magnified.
Fig. 318. Actinal view of Euphysa, to show the character of the veil. t, the odd long tentacle; t', one of the pair of tentacles; t'', the odd small tentacle.
Fig. 319. One of the tentacles seen in profile, to show the character of the band of pigment cells, p, extending along the base of the chymiferous tube from the origin of the tentacle, t.'
ECTOPLEURA OCHRACEA.

Ectopleura turricula Agass.

Sarsia turricula McCr. Gymn. Charleston Harbor, p. 36, Pl. 8, Figs. 6–8.

Charleston, S. C. (McCrad).

Ectopleura ochracea A. Agass.

The bell is of uniform thickness from the circular tube as far as the base of the digestive cavity; here the outline tapers gradually towards the abactinal pole (Fig. 320), giving the upper part of the bell a much greater thickness, and a conical shape. Near the base of the digestive cavity there is a very marked constriction; it then bulges out towards the middle, contracting again towards the actinostome, which is simple; the opening is formed by the abrupt termination of the walls of the digestive cavity; there are no labial appendages of any sort, except small bunches of lasso-cells. The tentacles are short; when swimming about they are usually carried tightly curled up near the circular tube. This species differs from the S. turricula McCr. in having the surface of the tentacles covered irregularly with innumerable lasso-cells; they are not arranged in bundles, as in the Charleston species. From each side of the base of the four tentacles there runs to the abactinal pole (Figs. 321, 322) a thread of bunches of lasso-cells (Fig. 320), like that of Turritopsis. The bunches are large near the actinal extremity, and gradually diminish to the abactinal pole, where there is only one cell, while near the base of the tentacles the bundles are made up of aggregations of clusters of lasso-cells, consisting of two or three cells each. An accumulation of bright yellow pigment-cells forms a ring round the point of attachment of the digestive trunk; the digestive cavity itself is of a delicate rose color, with whitish bunches of lasso-cells at the actinostome, surmounted by a second light yellow ring immediately above it; the tentacles are of the color of the digestive trunk, but of a

Fig. 320. Profile of Ectopleura ochracea, magnified. l, thread of lasso-cells extending to abactinal pole; p, pigment-cells at base of tentacles.
lighter tint; the pigment-cells in the sensitive bulb \((p, \text{ Figs. 320, 323})\) are purplish-orange upon a light-yellow ground. When the Medusa move about, which they do with great rapidity, the tentacles are twisted in knots, as stated above, but when at rest expand at right angles to the disk, and then the Medusa will often remain, balancing itself upon its tentacles, perfectly motionless in the water, appearing like a rosy tube, with its yellow ring set in a rectangle of four brilliantly colored ocelli.

Found at Naushon in September, the largest specimen being one fourth of an inch in diameter; young specimens have a shorter digestive trunk, and the rows of lasso-cells extending along the outer surface of the bell are more marked than in older specimens. The Hydroid of this Medusa probably resembles the *Tabularia Dumortierii* Van Beneden, the Medusa of which is closely allied to the one found on our coast.

Buzzard's Bay, Naushon (A. Agassiz).
Cat. No. 441, Naushon, Mass., A. Agassiz. Medusa.

CORYMORPHA SARS.

Corymorpha Sars. Beskriv., p. 6. 1835.

Corymorpha pendula Agass.

Corymorpha pendula A. Agass.; in Proc. Bost. Soc. Nat. Hist., IX. p. 191, Fig. 31.

The Medusa of *Corymorpha* is, like *Hybocodon*, asymmetrical; the shape of the bell is more elongated (Fig. 324) and the tentacles more

- Fig. 321. Fig. 320, seen from abactinal pole, to show the termination of the lasso threads.
- Fig. 322. Fig. 320, seen from the actinal pole, showing the origin of the threads on each side of the base of the tentacles.
- Fig. 323. The base of one of the tentacles, magnified. \(p\), cluster of pigment-cells.
HYBOCODON.

193

developed, the long tentacle (Fig. 324) attaining a size two or three times the length of the bell; the proboscis is long, and stretches beyond the aperture of the veil; the long tentacles (1, 2, Fig. 324) are capable of great contraction and expansion; the lasso-cells are arranged in groups upon them in such a manner as to appear like heavy rings surrounding the thinner thread; the outer wall of the proboscis is exceedingly thick, as in the Medusa of Euphysa, and of a light-yellow color; the pigment-cells at the base of the tentacles are light pink. This Medusa attains a size of a quarter of an inch, and is found at Nahant in the middle of May.

Although the separation of this Medusa from its Hydrarium has not been observed, yet their similarity to the most advanced Medusæ buds observed on our Corymorpha leave but little doubt on this point. Hodge has observed the development of an English species of Corymorpha, which resembles the Medusa here figured. (Fig. 324.)

Massachusetts Bay, Nahant (L. Agassiz).

Museum Diagram, No. 24, after L. Agassiz.

HYBOCODON. 193

HYBOCODON Agass.

Hybocodon prolifer Agass.

1862.

This is one of the few known Tubularians found growing singly. (Fig. 325.) The character of the Medusa is particularly important in a morphological point of view, giving us, as it does, the clue to the probable character of the scales (Deckstück) of the Nanomia, described below. The asymmetrical character of the Medusa (Figs. 326, 327) is more marked than in the Medusa of Corymorpha. The budding of Medusæ (Fig. 328), similar to the parent

Fig. 321. Medusa of Corymorpha, seen in profile. 1, long odd tentacle; 2, pair of tentacles; 3, short odd tentacle.

Fig. 325. Single Hydra of Hybocodon. 6, mouth surrounded with tentacles; 9, 11, marginal tentacles; d, d, advanced Medusæ buds; 6, stem.

NO. 25
Medusa, from the base of the single largely-developed tentacle, is a feature it has in common with other Medusae which have been referred by various writers to the genera Sarsia and Steenstrupia, and which very probably are all derived from a Tubularian nurse similar to Hybocodon. Should the Diplonema of Greene prove to be one of these asymmetrical Medusae, the name Hybocodon must give way to that of Diplonema.

Massachusetts Bay (L. Agassiz).

PARYPHA

Parypha cristata Agass.

Charleston, S. C. (McCrady).
Cat. No. 14, Sullivan's Islands, S. C., December, 1851, L. Agassiz.

Fig. 326. Hybocodon prolifer Agass., seen from the broad side. r, proboscis; s, radiating tubes; m, buds of Medusæ at base of long tentacle, t.

Fig. 327. Hybocodon prolifer, seen facing the long tentacle. a, point of attachment to Hydrarium; b, c, radiating tubes; e, rows of lasso-cells extending from base of tentacle to abactinal pole; o, proboscis; f, Medusa budding from base of long tentacle, t.

Fig. 328. Medusa bud of Hybocodon. a, base of attachment; o, proboscis; b, c, chymiferous tubes; d and near c, Medusa buds at base of tentacle, t.
Parypha crocea Agass.

Boston Bay (L. Agassiz).

Parypha microcephala A. Agass.

Resembles in its general aspect the _Parypha cristata_ Agass.; the stem is more slender than that of _P. crocea_, found in Boston Harbor; the head is much smaller than in either of the above-mentioned species, though the stem grows to a size fully as great as in our Eastern Parypha, giving it a very characteristic aspect. Found attached to floating logs round the wharves of San Francisco.

San Francisco, Cal. (A. Agassiz).
Cat. No. 15, San Francisco, Cal., October, 1859, A. Agassiz. Hydromedusarium.
Cat. No. 17, San Francisco, Cal., December, 1859, A. Agassiz. Hydromedusarium.

THAMNOCNIDIA Agass.

Thamnocnidia spectabilis Agass.

Massachusetts Bay, Boston (L. Agassiz).
Cat. No. 6, Boston, August, 1851, H. J. Clark. Hydromedusarium.

Thamnocnidia tenella Agass.

Massachusetts Bay, Nahant (L. Agassiz).
Cat. No. 8, Nahant, July, 1861, A. Agassiz. Hydromedusarium.
Cat. No. 410, Eastport, Me., 1861, Anticosti Expedition.
Cat. No. 411, Eastport, Me., 1863, A. E. Verrill.
Cat. No. 412, Eastport, Me., 1863, A. E. Verrill.
Thamnocnidia tubularoides A. Agass.

This species grows in clusters, which at first sight would readily be mistaken for a species of true Tubularia, on account of the great diameter of the stem, and the large size of the head. The structure of the proboscis, however, shows plainly that it is a genuine Thamnocnidia, which can at once be distinguished from its Eastern congener by the stoutness of the stem and size of the head, surrounded by as many as from thirty and even forty tentacles in large specimens. Found growing profusely on the bottom of the coal-barges which bring coal from Benicia to the Pacific Mail Steamship Company’s steamers at San Francisco.

San Francisco, Cal. (A. Agassiz).
Cat. No. 11, San Francisco, Cal., December, 1859, A. Agassiz. Hydromedusarium.

TUBULARIA LINN.

Tubularia larynx LINN.

Tubularia larynx Ellis. Cor., Pl. 16, Fig. 6.
Tubularia larynx Johnst. Brit. Zooph., p. 50, Pl. 3, Fig. 3; Pl. 5, Figs. 3, 4.

Grand Manan (W. Stimpson).

Tubularia Couthouyi Agass.

Tubularia indivia Mörch; in Besk. af Grønland, p. 96. 1857.

Massachusetts Bay (L. Agassiz).
Cat. No. 4, Boston, August, 1851, H. J. Clark. Hydromedusarium.
Museum Diagram, No. 24, after L. Agassiz.
Family HYDRAIDÆ Gray.

HYDRAIDÆ Gray.

HYDRA LINN.

Hydra Linn. Syst. Nat. 1756.

Hydra gracilis Agass.

Our fresh-water *Hydra* has as yet been studied so insufficiently, that I am unable to add anything respecting the development of the Medusæ, or concerning its identity with the European *Hydra viridis*. Agassiz has described two Eastern species under the name of *Hydra gracilis* and *H. carnea*, and Ayres a California species. From the character of the Medusæ of the *Hydra*, it seems to me that it finds its natural place among the true Hydroids, and not among the Discophora, with which it has usually been associated, on account of its close resemblance to the Scyphistoma (*Hydra tuba*).

Cambridge (L. Agassiz).

Cat. No. 370, Cambridge, 1862, W. Glen.

Hydra carnea Agass.

Massachusetts and Connecticut (Agassiz; Ayres).

Hydra tenuis Ayres.

San Francisco, California (Ayres).
Family HYDRACTINIDÆ Agass.

HYDRACTINIA VAN BENEDEN.

Hydractinia polyclina Agass.

Hydra squamata Fab. Fauna Grönlændica. No. 338.
Hydractinia echinata Leidy. Mar. Inv. New Jersey and Rhode Island, p. 3, Pl. X. Fig. 35. 1855.
Clæa squamata Mörch; in Beskriv. af Grönlænd, p. 96.

As such constant reference is made to _Hydractinia_ in the comparison of the free colonies of _Nanomia_ to the fixed Hydroids, figures of male

(Fig. 329) and female (Fig. 330) colonies of this species are here introduced to facilitate the comparison.

Point Judith (Leidy); Atlantic coast of North America (L. Agassiz).
Cat. No. 55, Grand Manan, 1859, A. E. Verrill.
Cat. No. 56, Grand Manan, October, 1857, J. E. Mills.
Cat. No. 57, Chelsea Beach, L. Agassiz.
Cat. No. 59, Nantucket Shoals, July, 1849, L. Agassiz.
Cat. No. 403, Nantucket, Mass., July, 1862, A. Agassiz.
Museum Diagram, No. 25, after L. Agassiz.

Fig. 329. Part of male community of _Hydractinia_. _a_, _a_, sterile individuals; _b_, fertile individual; _d_, male Medusa; _o_, _o_, proboscis; _t_, elongated tentacle of sterile individuals.

Fig. 330. Part of female community. _a_, sterile individual; _b_, fertile individual, producing female Medusa, _d_, _c_, _f_, _g_, _h_, _i_; _o_, peduncle of mouth; _c_, individual with globular tentacles.
Suborder **Diphyæ** Cuv.

Diphyæ Cuv. Règne Animal, IV. 1817.

For the reasons which have led me to adopt the old divisions of Eschscholtz, and not the divisions of Leuckart, which have found such universal approval, I would refer to the description of Nanonia given below.

Family **Diphyidæ** Esch.

Eudoxia Esch.

Eudoxia Esch. Syst. der Acal., p. 125. 1829.

Eudoxia alata McCr.

Eudoxia alata McCr. Gymnoph. Charleston Harbor, p. 70, Pl. 8, Figs. 9, 10.

Charleston Harbor (McCrady).

Diphyes Cuv.

Diphyes Cuv. Règne Animal, IV. 1817.

Diphyes pusilla McCr.

Charleston, S. C. (McCrady).
SUBORDER PHYSOPHORÆ GOLDF.

Family AGALMIDÆ Brandt.

NANOMIA A. AGASS.

Nanomia cara A. AGASS.

This Siphonophore is closely allied to the genus Agalmopsis of Sars, but the nature of the tentacles of the feeding polyps, and the mode of arrangement of the swimming-bells, show undoubtedly that it cannot be placed in the same genus as Agalmopsis, though closely related to it, as also to Halistemma of Huxley. The small size of this species has been of great advantage in enabling us to seize readily, at one glance, the connection between the different parts of this community, while the great size of many of the species hitherto observed has always been more or less of a drawback in analyzing the relations of the individuals of the community.

The float, or swimming-bladder, (I shall use at present the nomenclature usually adopted, and afterwards show to what parts these organs correspond in an ordinary Hydroïd,) is a large elliptical cavity (Fig. 331), entirely shut off from the main cavity, which runs from the base of the float, through the whole of the axis of the community. It contains in this genus a bubble of oily substance; the nature of the contents of the float varies in different families of Siphonophore, and this cavity may or may not be closed. In this genus it is closed, and there is no access to the oil-bubble from without; the oil-bubble by no means fills the whole of the cavity of the float. The float is of a brilliant garnet color; from it hangs the rosy-

![Fig. 331. Oil-float of Nanomia; magnified.](image-url)
colored axis, with its pale swimming-bells, and farther down, the scales, protecting the different kinds of feeding polyps, with their various kinds of tentacles projecting in all sorts of angles and curves from the main axis of the body, like the festoons of a chandelier; the darker-colored polyps, tipped and mottled with scarlet, being visible underneath the protecting scales. (Fig. 332.)

The swimming-bells are arranged in two vertical rows, consisting of four to six large bells each; they are placed obliquely, in such a way that the wing-like projections of the spherosome encroach upon those of the opposite row, and thus fit closely and compactly together, by a sort of oblique dovetail arrangement; these bells are only symmetrical when seen from one of the sides (Fig. 333), when they appear somewhat heart-shaped, having a large cavity which opens externally by means of an aperture (see Fig. 334) in a veil, similar to that of genuine naked-eyed Medusae, and capable, like it, of beating up and

Fig. 332. Nanomia cara; natural size.
down, and forcing the water in or out of the cavity of the bell. From the abactinal pole of this cavity diverge four chymiferous tubes, which lead into a circular tube, connecting them all (c, Fig. 334); two of these tubes, t', t'' are straight, and run directly from the point of junction of the four tubes (j, Fig. 334) to the circular tube, while the other tubes, t, t, wind round before joining the circular tube. The connection of these chymiferous tubes with the tube into which they run, and which connects them all with the main cavity of the axis of the community, can readily be traced by combining the different views of the swimming-bell here given. (Figs. 333–336.) In Fig. 333 the straight chymiferous tubes run perpendicularly to the circular tube, in continuation of the tube passing through the abactinal pole of the spherosome; while in Fig. 336, which is a view at right angles to that of Fig. 333, we see the connection of the winding tubes with the connecting tube; the opening (j', Fig. 335) of the connecting tube (t'', Fig. 335) is somewhat to one side of the point of junction of the chymiferous tubes (j, Fig. 334), as is readily seen on examining Figs. 335, 336. Fig. 336 shows the wing-like expansions of the spherosome which clasp the axis, giving the Medusa a conical appearance, when seen from that side; while when seen from the actinal or abactinal pole, as Figs. 334, 335,

Fig. 333. Swimming bell of Nanomia, seen facing the side of the straight chymiferous tubes.

Fig. 334. The same bell, seen from the actinal pole, somewhat more magnified. t, t, bent chymiferous tubes; t', t'', straight chymiferous tubes; c, circular tube round veil; j, point of junction of the four chymiferous tubes.

Fig. 335. A portion of the same bell, seen from the abactinal pole; lettering as in Fig. 334. j', opening of tube, t'', leading into the main axis connecting with one of the straight chymiferous tubes.
the shape of the swimming-bell is rectangular. There can be but little doubt that these swimming-bells, as I have called them, are genuine Medusae; they have all the characters of Medusae, and when they become detached, move like them, the only difference being the absence of a proboscis to admit food. This, however, they do not need as long as they remain connected with the main axis, the cavity of which opens directly into the chymiferous tubes, and thus circulates in them whatever food is taken in at the feeding mouths, and from them passed into the cavity of the main axis. I have not been able to detect any opening leading directly into the system of chymiferous tubes. These Medusae are the locomotive organs of the community; they force the water in and out of their cavity, and thus propel the whole community by a sort of alternating motion, resembling that of sculling a boat; the bells on one side of the axis are filling with water, while those of the other side are forcing the water out violently; the motion begins at the bottom bell, passes on to the top one of the same side, then begins at the bottom of the other row, and so on, throwing the whole of the upper part of the community violently from one side to the other, while the remainder is dragging lazily after it. I have not found any specimens with more than eight swimming-bells fully developed; the younger bells are added between the first-formed pair and the float, where we find a cluster of swimming bells in different stages of development. These young bells are formed, as the Medusae buds of the Tubularians, by folds of the outer wall, which gradually grow larger and larger, and circumscribe parts of the main cavity to form chymiferous tubes.

In their younger stages, the swimming-bells resemble still more the Medusae of Hydroids, when they have not yet assumed an irregular outline, and while their chymiferous tubes are still straight. In the cluster of young bells here given (Fig. 337), we find a few of the different stages through which one of these bells passes, from the time it appears as a mere bud, till it has gone through

Fig. 336. The same bell as Fig. 333, seen from the other side, to show the course of the bent tubes, and the mode of connection of the tubes leading into the main axis; t, bent tube.

Fig. 337. Group of swimming bells, in different stages of development. a, the chymiferous tubes are simple sacs; b, the tubes, having united, make a circuit; c, first signs of bending of the tubes, t, of the preceding figures.
the different phases in which the chymiferous tubes are mere pouches (a, Fig. 337), then large tubes connected by a circular tube (b, Fig. 337), till finally the bell becomes somewhat expanded at one pole, and the tubes have a tendency to bend, as in c, Fig. 337, when the difference between the two kinds of chymiferous tubes is quite marked, although the mode of attachment of the Medusa and the shape of the bell remind us strongly of Tubularian Medusæ buds, and we find no trace as yet of the wing-shaped appendages, and of the difference of outline of older Medusæ, when seen from different sides.

As there is a portion of the axis, immediately beneath the float, which is free from swimming-bells, we find also under the swimming-bells a small part of the axis bare; we soon, however, come upon a cluster of small buds entirely different in character from those found under the float; these are polyps, or feeding-mouths, in different stages of development. The polyps (Medusæ) to which this set of buds give rise are of very different characters; they are of three kinds, and nearly equally distributed along the remainder of the axis, no part of the axis being reserved for any special kind of polyp; the most prominent kind, and the largest, are the Hydra-mouths (Fig. 338), which are the most active, and in which we find, at the point of junction with the axis, a cluster of long tentacles, along the thread of which are fastened, by a short handle, a knob-like appendage; these are the tentacles which are so prominent, and assume such manifold attitudes when the community is at rest or in motion. The polyps are open at the distal extremity, the opening being frequently expanded like the disk of a leech, or simply flaring trumpet-shaped; they are exceedingly contractile, and sometimes expand far beyond the axis in search of food; they communicate by means of a somewhat narrow neck with the main axis, so that the food which is taken in by any one of these mouths helps to feed the whole community, and circulates freely in the main axis, and in every polyp and swimming-bell. The clusters of tentacles are protected by a shield-like scale (Deckstück), to the nature of which I shall refer hereafter; this scale is triangular, with rounded extremities, and through the middle of it passes a thin tube, which connects with the main axis, making a kind of knee immediately above the point of junction; the upper shield of Fig. 338 shows plainly the mode of connection. The knobs of

Fig. 338. Cluster of Medusæ (feeding polyp) of the first kind formed, in the younger stages, with tentacular knob and scale. In the upper part of the figure a closed bud, with an oil-bubble, is seen; this bud is ready to be liberated and become an embryonic community, like Fig. 346.
this kind of tentacles are sole-shaped bodies, paved with a beautifully arranged setting of large lasso-cells, edged in by a large set running round the edge (Fig. 339); these knobs are partly hollow, a portion of the tube of the tentacle extending into it a short distance.

The second kind of feeding polyps (Medusae) (Fig. 340) resemble the first in every respect except the tentacles; they are, like them, attached to the main axis, and protected by a scale, omitted in the figure; at the proximal end of the polyp we find, however, a cluster of tentacles of a totally different nature from the club-bearing lashes of the first kind; they take their origin as diverticula of the wall of the polyp, as those of the first kind; they never grow long, scarcely extending the length of the polyp, but are twisted closely when fully developed, though in their earlier stages they are more corkscrew-shaped, and coiled quite loosely. The whole surface of these tentacles

is covered by a regular pavement of lasso-cells of the same size; the lasso-cells in the young tentacles are only found on the edge; as they increase in length, the tentacles become more thickly covered, until, when closely coiled, they have the pavement described above. There are generally from five to six (Fig. 340) of these large tentacles, and about as many more, in different stages of development, at the base of each of these polyps; while of the first kind of tentacles we rarely find more than three long threads, though there is a thick cluster of embryonic ones adjoining them ready to develop and take their place if any accident should happen to the longer meshes.

The third kind of polyp (Medusa), which is found along the axis, are polyps with closed extremities (Fig. 341), differing besides from the others in having only one long, slender tentacle at the proximal ex-

Fig. 339. Enlarged view of the knob of a tentacle of the first kind of Medusa.
Fig. 340. The second kind of Medusa, having corkscrew-shaped tentacles. The scales in this and following figure are omitted; they differ in no respect from those of Fig. 338.
Fig. 341. Third kind of Medusa, having only a single thread-like tentacle, and a closed proboscis.
tremity, and being perfectly colorless; this tentacle is three or four
times the length of the polyp, and is covered with patches of small
lasso-cells scattered irregularly over its surface; the walls of this polyp
are thick, and are not capable of extensive expansion or contraction, or
of any remarkable alteration of shape, as the former kinds. There is
still a fourth kind of appendage formed here and there along the stem,
one of which is figured on the top of Fig. 338, which resembles this
last kind of polyp, being closed, like it, at the extremity, but having
neither scale nor tentacles of any kind, and in the proximal end of
which we notice an accumulation of oily matter; these I simply men-
tion here, and shall return to them hereafter.

The new polyps which are added to the community take their origin
from the cluster of buds situated beneath the swimming-bells; like the
swimming-bells, they are formed by the bulging of the wall of the main
axis (Fig. 342); they very soon assume the general aspect of feeding
polyps, though they remain closed at their distal extremity
after they have attained a con-
siderable size (p, p', p'', Fig.
342); the scarlet pigment-cells
make their appearance at a
very early period, so that we
are able, in very young buds,
to recognize the nature of the
future polyps; as soon as the
polyp buds are slightly more advanced than they are in the figure here
given (Fig. 342), the nature of the tentacular buds at the base, and the
total absence of pigment-cells in some of the larger closed buds, enables
us readily to decide to which kind of polyps (Medusæ) those different
buds will give rise; the peculiar sole-shaped knobs of one of the kinds
of tentacles are nothing but an expansion of the original diverticulum
at the base of the polyp; the different phases through which the knobs
pass are very easily followed by examining the various stages of growth
found in a cluster of tentacles, such as is represented in Fig. 338 (some-
what enlarged in Figs. 343, 344), until they attain the shape repre-
sented in Fig. 339. They are at first a narrow bag, with a few scat-
tered lasso-cells (a, Fig. 343), then the thickness of the wall at the
extremity increases, the lasso-cells at the same time becoming large
(b, Fig. 343). In the next stage, when seen in profile, the sac has
assumed a hook-shaped form (c, Fig. 343), the bend becomes still more
marked, and the lasso-cells are now arranged in a row along the ex-
tremity (d, Fig. 343); the walls become thicker as the lasso-cells

Fig. 342. Cluster of Medusæ (feeding polyps) in different stages of development, before the
appearance of the scale or of the tentacles. p, oldest; p', somewhat younger; p'', still younger.
become more numerous and larger, the knob assuming more a ladle-shape (e, Fig. 344); there is then formed a still larger row of lasso-cells, extending along the edge, and concealing the others (f, Fig. 344), making a kind of binding when seen from above (g, Fig. 344), where we find all the peculiar characteristics of the sole-shaped, lasso-paved knob of Fig. 339, the only difference in the older knobs being the greater size of the outer row of lasso-cells, and their closer packing, which conceals entirely the cavity running into the knob, while it is plainly visible in younger tentacles.

The perfectly free and open communication we find between all the parts of the community, except the float, is one of their most striking characteristics; there is not an appendage into which the food taken in by any one of these feeding polyps (Medusae) cannot circulate into its very extremity; even the scales, which seem in their full-grown state to consist of nothing but a gelatinous shield, with a very narrow tube passing through the middle, are, when developing, open pouches leading at once into the main cavity of the axis, and even after the buds can distinctly be recognized as undeveloped scales (Fig. 345), the cavity occupies a much greater part of the scale than in the adult, as is readily seen in the different views of one of the scales (a, b, c, Fig. 345). In the view from above, a, the triangular shape is already apparent; a profile view, b, shows its greater thickness than in a fully-developed scale, while in an end view, c, it is still quite pentagonal.

Besides these different kinds of appendages, we find the sexual individuals scattered in small clusters of abortive Medusae near the lower extremity of the axis, generally in the third nearest the terminal

Fig. 343. a, b, c, d, tentacular knobs like those of Fig. 339, in different stages of development.
Fig. 344. e, f, g, the same tentacular knobs, still further developed.
In Figs. 343 and 344 all the figures are seen in profile, except b of Fig. 343, and g of Fig. 344, which are seen from the flat side, to show the arrangement of the lasso-cells.
Fig. 345. Young scale; seen from above, a: in profile, b; and endways, c.
polyp; as has already been shown by Sars in Agalmopsis, the sexes are distinct, so that we have whole communities, the sexual Medusae of which are either males or females. There is no great difference between the appearance of the male and female Medusae; they do not (as is the case in Agalmopsis, according to Sars) separate from the community, and lead an independent existence; they wither on the stem, after having discharged their contents. The Medusae form bunches, the single Medusae of which are directly attached to the main axis; they are somewhat pointed in outline, with four tolerably well defined chymiferous tubes, resembling quite closely the sessile Medusae of such Tubularians as *Tubularia Conkouyi*.

From the observations of Gegenbaur, there can be no doubt that many of the Siphonophores are, like Nanomia, developed directly from the egg, and that the embryo which comes from the egg is one which is identical with those found floating about in such immense numbers during the early part of June, and which are figured in Fig. 346, consisting of a single closed polyp and of an oil-float, separated by a partition, as in the adult (Fig. 331); this simple polyp is to be the axis of the future community. But these young Nanomiae (Fig. 346) do not all arise from eggs, and pass directly into an embryo like Fig. 346; we have a second kind of development, that of budding. In Fig. 338 there is represented on the top an appendage resembling somewhat a polyp without an opening, having neither tentacle nor protecting scale. A bubble of oil is collecting at the proximal extremity; as this bubble increases in size, the neck which connects the polyp with the main axis gradually becomes narrower and narrower, until the connection is finally cut, and we have a bud resembling in every respect Fig. 346, which has separated from the main community. By keeping in confinement, entirely isolated, an adult Nanomia having many of these buds along the main axis, I have found after a few days a large number of these buds liberated, which had assumed the shape and structure of Fig. 346, and had grown to be similar in every respect to the embryos I was fishing from the sea at the same time. From this I should infer that we have two broods of adults, those which are found in the fall, and which lay eggs in October and November, and those which are probably formed by budding from the older ones during the summer and winter; the embryos found in early summer may have come from the eggs of either of these.

The young embryos (Fig. 346) readily keep alive in confinement, and it is a comparatively easy thing to trace the successive stages of a

Fig. 346. Youngest Nanomia found swimming on surface.
Fig. 347. Somewhat more advanced.
further development; the terminal Hydra of Fig. 346 increases greatly in size; a number of buds make their appearance on both sides of the axis, immediately at the base of the float; these buds are nothing but the rudimentary swimming-bells, the so-called polyps and the tentacles. (Fig. 347.) As the young Nanomia grows larger, these buds increase in size, and we can soon trace in some of them undoubted polyps, with an open mouth, and the rudimentary tentacular knobs accompanying them; immediately at the base of these polyps there is a small transparent protuberance, the first appearance of the protecting scale. The terminal polyp of this diminutive community increases greatly in size, becomes open at the extremity, and covered irregularly with large patches of scarlet pigment-cells; the tentacles become longer, and when they equal in length that of the community, from six to eight knobs hang from the main threads. (Fig. 348.) In somewhat more advanced specimens, we find protecting scales already quite well developed (Fig. 349), and besides many additional polyps in different stages of development, such as are figured in Fig. 342; the buds immediately under the float, the nature of which seemed still doubtful in the last stage (Fig. 348), are now seen to be rudimentary swimming-bells, some of them nearly as advanced as those represented in Fig. 337; these rudimentary parts grow now with great rapidity, the clusters of the

Fig. 348. The terminal Hydra is open, tentacles are developed, as well as clusters of small swimming-bells, like those of Fig. 337, and of Medusae (feeding polyps), like those of Fig. 342.

Fig. 349. Still more advanced Nanomia.

Fig. 350. Young Nanomia, where we find several Medusae (feeding polyps) of the first kind, having all the characters of those found in the adult (Fig. 332), and embryonic swimming-bells.

Fig. 349. Still more advanced Nanomia.
different kinds of individuals taking the place we find them occupying in the adult; the swimming-bells are placed immediately under the float, and the polyps between them and the primitive polyp. The protecting scales increase rapidly, and in Fig. 330 we have a young Nanomia having two well-developed polyps, as many scales, and as many tentacles, one of the polyps being the first terminal one, and the other a lateral polyp, at the base of which are found the rudimentary tentacles, while immediately under the float we find a cluster of rudimentary swimming-bells, as far developed as those of Fig. 337.

From this point there is no doubt that we have before us a young Nanomia, and the future phases of the development are only changes of quantity. The various members of the community have, however, a very different degree of development. What is particularly characteristic of the young Nanomia is that it is entirely composed of the polyp element, and of the polyps with knobbed appendages; it is only somewhat later that the scales make their appearance, and we then have a sufficient number of these polyps added to make quite an extensive community before any other kind is formed, and before the swimming-bells are developed. We generally find a couple of large swimming-bells preceding the appearance of the second kind of polyp (Fig. 339); it is not till still later that the Hydrocysts (Fig. 341), as Huxley has called the closed polyps, make their appearance. The remaining swimming-bells are slow in their development; we do not usually find more than two in quite large specimens, and it is only in the adult, where we find the buds which are to separate as young floats and where the sexual individuals have begun to make their appearance, that there are from four to six swimming-bells. (Fig. 332.)

From this slight sketch of the order of succession of the different individuals, we have the means of dividing all the Siphonophores into three great suborders, according to the degree of development of the three principal elements. Lowest are those in which the float has the greatest predominance, and in which the different individuals of the community appear as secondary appendages, such as Porpita, Velella, and Physalia; in the second suborder we have the various stages of combinations of the hydrarium and the swimming-bell elements, in the following forms, — Rhisophyza, Apolemia, Agalma, Nanomia, Stephanomia, and Forskalia; while in the third and highest suborder we find the greatest development of the swimming-bells, accompanied by a reduction in the number of individuals forming a single community, and a further specialization of parts not found in the preceding orders. The different appendages which are found along the axis of these floating Hydroids have been considered by most English investigators as simple organs, while the greater number of German writers believe them to be different kinds of individuals, form-
ing together a community, and not a single animal, as maintained by
the former. The solution of this question has been considered in
various ways by Agassiz, Kölliker, Vogt, Leuckart, Gegenbaur, and
Huxley. Professor Agassiz, who was the first to show the homology
existing between one of these floating communities and a fixed com-

munity of Hydroids such as Hydractinia, has, it seems to me, given
the correct account of these animals. According to him, and the prin-
cipal points of this view have afterwards been proved independently
by Vogt, and also developed further, from Professor Agassiz's lectures,
by McCrady, a Siphonophore is neither a single animal, and its different
appendages simply organs, nor, according to the opposite and more
extreme view of Leuckart, does he push the polymorphism to such an
extent as to consider all the appendages, such as the tentacles and
scales, as independent individuals; he compares one of these commu-
nities to the different kinds of individuals found in a Hydractinia com-

munity, and thus shows beyond doubt that the Siphonophores are not
a natural order of the Acalephs, but simply different suborders of the
order of Hydroids; the fact that they move about as free communities
does not separate them from the fixed Hydroids; it would be as un-
natural to remove into different orders the free swimming Haleyonooids,
such as Renilla, Veretillum, and the fixed Gorgonia or Haleyonium.
It has already been fully shown by Vogt that the swimming-bells of
Agalma and the like are only Medusae differing from the Hydroid
Medusae in the absence of a free proboscis and of an opening commu-
nicating directly with the surrounding medium. The swimming-bells
of Nanomia are nothing but Medusae having complicated chymiferous
tubes, remaining almost always attached to the community, and per-
forming their part of the work. They are the locomotive individuals
of the community; to them is intrusted the carrying about the whole
of this fraternity, while different functions belong to the other indi-
viduals, some of them feeding the community, others serving to repro-
duce it by budding, while others again reproduce it by laying eggs.

The nature of the different kinds of polyps found along the axis
does not seem to have been correctly understood; we can compare
them, in a general way, to the different kinds of individuals found in
a Hydractinia community; it seems to me that the only parts which

can be homologized to one of these fixed Hydroids are the float, the
original polyp, and the buds (top of Fig. 338) which drop off. These
are in reality the floating Hydroid, and the other individuals, developed
as the axis or original Hydroid becomes larger, are not Polyps like the
original one, but Medusae in various stages of development, having a
different appearance from those we are accustomed to consider as such.
We have, in the suborders of Siphonophore, communities of different
kinds of Medusae, instead of having communities of different kinds of
Hydroids, as in Hydractinia, only these Medusæ never separate from the original parent-stock from which they are produced. The float corresponds to the part of the stem of the fixed Hydroids by which they are attached, and the different individuals arising from this single Polyp are Medusæ. To show the Medusa character of these individuals, I must preface by saying that the tentacles, the Polyp, and the scale are not so many independent individuals, but that these three together form one individual, the Medusa. It is true this will appear, at first sight, rather doubtful; we are accustomed to associate with our notion of Medusa a regularly-shaped bell, chymiferous tubes, and a proboscis. But this is not the universal character of Medusæ; the abortive sessile Medusæ of Sertularians, Campanularians, and Tubularians are as much Medusæ, though they have no proboscis and nothing but rudimentary chymiferous tubes, as a free-swimming Sarsia or Bougainvillia. The moment this is understood, a new light is thrown on the nature of the individuals of our community. We find among the Hydroids all the stages intermediate between a rudimentary Medusa, as that of Laomedea or of Dynamena, and that of a symmetrical Medusa like Sarsia. We have those in which the proboscis is quite well developed, others in which the chymiferous tubes are always rudimentary, others which are asymmetrical, as Hybocodon, and the different spheromeres of which have not an equal degree of development. This gives us the clew to the true understanding of the relation between the clusters of tentacles, the scale, and the Polyp; let us take one of these Hybocodon Medusæ, cut away the two lateral spheromeres of the bell, and at the same time reduce the spheromere which bears the long tentacle to its minimum, that is, bring the tentacle to the point of junction of the proboscis and of the chymiferous tubes, cut the remaining spheromere in any shape we please, triangular or pentagonal, and we have a Medusa identical in every respect to those of our community. The cluster of tentacles corresponds to the single tentacle, the scale with its tube corresponds to the remaining spheromere and its chymiferous tube, while the proboscis and the Polyp are identical, and perform one and the same function. The fact that there is or is not a chymiferous tube extending through the scale, as in Fig. 338, does not invalidate this homology; for the chymiferous tubes in many Hydroid Medusæ are exceedingly rudimentary, and in that case it would only be carrying out for free Hydroids what has become perfectly familiar to us among the fixed Hydroids.

By reducing this proposition to a mathematical form, I may perhaps give the reader a better idea of the process I am endeavoring to explain, by supposing an equation of the nth degree to represent the formula of a Hydroid Medusa, the roots of which are represented by the different spheromeres; they all become imaginary in our Nanomia,
NANOMIA CARA.

with the exception of one root, which is positive, and this would represent the only remaining spheromere, that of the Deckstück.

If this view is correct, it is evident that the opinion of Huxley, who considers the scale as homologous to the urn of Campanularians, cannot be sustained. I have already hinted at the similarity of the embryonic Nanomia, in the stage of Fig. 347, when it consists of only the large Polyp and the float, with the early stages of the fixed Hydrarium of Melicertum, where we have at first a single Polyp, from which are developed, by budding, the branches and the other kinds of individuals of the community; supposing this community, instead of fixing itself, as it does, to remain movable, the base of the stem to expand into a float and become separated from the main cavity, we should have a Siphonophore. The discovery by McCrady and Stimpson of the floating Hydrarium of Nemopsis and Acaulis, where the Medusae are closely related to genera the Hydrarium of which is always fixed, reduces still further the distinction which has been made of Polypi Nechali. And when we find that there are genuine Medusae (Dysmorphosa) which for four generations reproduce themselves by budding from the proboscis, exactly in the same way in which we find additional individuals arising along the walls of the original Polyp among Physophoridae, we are at a loss to find any distinctions to separate the Siphonophores from the true Hydroids, and we cannot consider them as anything but floating Hydroid communities.

Massachusetts Bay, Nahant, and Newport, R. I. (A. Agassiz).
Cat. No. 365, Nahant, Mass., September, 1862, A. Agassiz.
Museum Diagram, No. 27, after A. Agassiz.
SUBORDER PORPITÆ GOLDF.

Chondrophora Cham. et Eys. Acta Nova, X.

From a comparison of the young stages of Nanomia with the known Siphonophora, I have been induced to extend the limits of this sub-order so as to include Physalia, forming thus three suborders among Hydroids of the old order of Siphonophora, the Diphyæ, the Physophora, and the Porpita.

Family PHYSALIDÆ Brandt.

PHYSALIA LAMK.

Physalia Arethusa Til.

Physalia Arethusa Til.; in Krusenst. Reise, Pl. 23, Figs. 1-6. 1813.

Physalia Arethusa (Fig. 351) is probably carried by the Gulf Stream as far as the Azores. A species has been described by Lesson as Physalia azoricum, which may be only the young of Physalia Arethusa. (See Voyage de la Coquille, Plate 5, Fig. 4.) To facilitate the comparison of the different kinds of individuals found in communities of this family with those of Nanomia, groups

Fig. 351. Physalia Arethusa Til. Figs. 351-354 are copied from Professor Agassiz's Contributions. a, blunt end of air-sac supporting the community; b, open end of air-sac; c, crest of air-sac; d, bunches of single individuals; e, tentacle contracted; t, tentacles of the largest kind expanded.
Physalia Arethusa.

of Hydrae and of Medusæ (Figs. 352, 353, 354) are introduced here.

Charleston (McCready); Gulf of Mexico (Brown, Sloane); Florida (L. Agassiz); Cape Cod (A. Agassiz); Martha’s Vineyard (W. H. Forbes).

Cat. No. 305, Florida, 1850, L. Agassiz.
Cat. No. 306, Florida, 1850, L. Agassiz.
Cat. No. 307, Florida, 1850, L. Agassiz.
Cat. No. 308, Key West, Fla., February, 1858, L. Agassiz.
Cat. No. 309, Key West, Fla., March, 1858, L. Agassiz.
Cat. No. 310, Tortugas, Fla., February, 1858, L. Agassiz.
Cat. No. 311, New Providence, Bahamas, April, 1861, F. G. Shaw.
Cat. No. 312, Mobile, Alabama, L. Agassiz.
Cat. No. 313, 40° N. Lat., 60° W. Long., Captain W. H. A. Putnam.
Cat. No. 325, Tortugas, Fla., March, 1858, L. Agassiz.
Cat. No. 386, Bermudas, A. S. Bickmore.

Museum Diagram, No. 28, after L. Agassiz.

Fig. 352. Bunch of single Hydrae, and clusters of Medusæ, of Physalia Arethusa Til. b, b, Hydrae, with their tentacles, c, c; d, d, bunches of tentacles.
Fig. 353. Bunch of Hydrae. a, hollow base of attachment communicating with air-sac; b, b, single Hydra; c, c, tentacles.
Fig. 354. Bunch of Medusæ in various stages of development. a, hollow base of attachment; b, Hydra; d, d, Medusæ buds.
Family VELELLIDÆ Esch.

VELELLA LAMK.

Rataria Esch. Syst. der Acal., p. 166. 1829.

Veledilla mutica Bosc.

Veledilla mutica Less. Voyage de la Coquille, Pl. 6. 1829.

The free Medusa of Veledilla resembles so exactly that produced by some of the Tubularians — Euphysa and Globiceps, for example — that it would seem the most natural thing to place these Medusae among Tubularians, as McCrady has done; but the polymorphism of the

Hydra (Fig. 355) and the presence of the float (Fig. 356) associate the Hydrarium with the Porpitae. The free Medusa is but another link showing how close is the relation between the floating and fixed Hydroids. The Medusa figured here (Fig. 357) is one which has just freed itself. The chymiferous tubes, as well as the proboscis, are of a

Fig. 355. An enlarged view of one of the fertile Hydrae of Veledilla. a, base of attachment of Hydra; b, end of Hydra; d, d, clusters of Medusae. All these figures are copied from Professor Agassiz's Contributions, Vol. III.

Fig. 356. Veledilla, seen from below, to show the Hydrae. m, opening, so-called mouth; a, fertile Hydrae situated between the mouth and the outer tentacles, the sterile Hydrae.

Fig. 357. Magnified view of a free Medusa of Veledilla mutica Bosc. a, proboscis; b, chymiferous tube; c, circular tube.
brilliant ochre color. Professor Agassiz has observed this Medusa four days after it became free, when the Medusa had become quite globular, having lost entirely its elongated shape.

Long Island Sound (A. Agassiz); Gulf of Mexico (Bosc); Coast of Florida (L. Agassiz).

Cat. No. 296, Florida, 1850, L. Agassiz.
Cat. No. 297, Fort Jefferson, Fla., April, 1859, Dr. D. W. Whitehurst.
Cat. No. 298, Key West, Fla., March, 1858, J. E. Mills.
Cat. No. 299, Cape Florida, April, 1858, G. Wurdeman.
Cat. No. 300, Cape Florida, G. Wurdeman.
Cat. No. 301, Tortugas, Fla., April 2, 1858, L. Agassiz.
Cat. No. 302, Tortugas, Fla., April, 1858, J. E. Mills.
Museum Diagram, No. 27, after L. Agassiz.

Veella septentrionalis Esch.

Veella septentrionalis Esch. Syst. der Acal., p. 171, Pl. 15, Fig. 1. 1829.

Numerous specimens were collected at the entrance of the Straits of Fucta. The proportions of this species are quite different from those of our West Indian V. mutica. The figure given by Eschscholtz gives a good idea of the almost square outline of the float.

In company with V. septentrionalis was always found a Physalia, which I have been unable to refer to any of the described species. As the specimens of both were lost, they are mentioned here for the sake of the geographical distribution of these animals.

Northwest coast of America (Eschscholtz); Straits of Fucta (A. Agassiz, October, 1859); San Francisco Bar (A. Agassiz, October, 1859).
Family PORPITIDÆ Guild.

Vellellidae Esch. (p. p.). Syst. der Brachi., p. 163. 1829.

PORPITA LAMK.

Polybranchia Guild.; in Zool. Journ., XI.
? Armenistarium Costa. Faune de Naples.

Porpita linnaeana LESS.

Polybranchia linnaeana Guild.; in Zool. Journ., XI, Fig.
? Porpita atlantica Less. Voy. de la Coquille, Pl. 7, Fig. 2.

West Indies (Goulding); Florida (L. Agassiz); Charleston, S. C. (McCready).
Cat. No. 289, Fort Jefferson, Fla., April, 1859, Dr. Whitehurst.
Cat. No. 290, Pensacola, Fla.
Cat. No. 291, Key West, Fla., L. Agassiz.
Museum Diagram, No. 27, after L. Agassiz.
SUBORDER TABULATÆ AGASSIZ.

Corallaria Tabulata Edw. & Haime. Archiv du Mus., V.

Family MILLEPORIDÆ Agass.

MILLEPORA LINN.

Millepora Lin. Syst. Nat.

Millepora alcicornis LIN.

Millepora alcicornis LIN. Syst. Nat., X. 1758.

The absence of radiating partitions in the Tabulatae seems to show, without much doubt, that their true place is among the Hydroids. It is true that Professor Agassiz has not observed the Medusa buds on the specimens he has figured (Fig. 358), yet the Hydroid character of the animal, and their similarity to Halocharis-like Hydroids, is very striking. It certainly is not more wonderful to have among Acalephs Hydroids which should deposit hard limestone parts (Figs. 359, 360), as Millepora and the like, than it is to find among the Polyps animals in which we find partitions of every stage of hardness, from a gelatinous or a horny nature, to the most solid deposits of limestone. We have already something of the same diversity in the formation of the

Fig. 358. Magnified view of extended Hydroids of Millepora. a, a, small Hydroids; b, larger ones; m, mouth; t, tentacles.
Fig. 359. Branch of Millepora alcicornis; natural size.
Fig. 360. Transverse section of branch. a, a, pits of Hydroids.
different kinds of sheaths of the Sertularians and of the Campanularians, and especially in the great development of the horn-like network forming the base of a Hydactinia colony, and the limestone floors deposited by the base of the animal of Millepora is only an extreme case for Acalephs, similar to the solid radiating partitions of the Madrepores among Polyps.

Tortugas, Fla. (L. Agassiz).

Cat. No. 382, Tortugas, Fla., March, 1858, L. Agassiz.
GEOGRAPHICAL DISTRIBUTION.

For the sake of showing more strikingly the character of the different Acalephian Faunæ of our coasts, lists have been prepared embracing several species not enumerated in the Catalogue, to give a better idea of the peculiar stamp of the regions into which our coast has been divided. No names are here given to these faunal divisions, as in a forthcoming number of the Museum Catalogue the limits and nomenclature of our Marine Faunæ will be fully discussed. For the present I shall simply point out in a general manner some of the more interesting points of the distribution of our Acalephs. Several species have a very extensive range; on the Atlantic side, from Greenland to Long Island Sound, and from Grand Manan to Charleston, South Carolina. In the Pacific Ocean we find species which range from Kamtschatka to the northern part of California. Within these extensive belts there are other species more limited in range, extending only from Massachusetts Bay to Eastport, from Charleston to Cape Cod, from San Francisco to the Gulf of Georgia, or from the Gulf of Georgia to Behring’s Straits; while a third series of species is still more limited, extending only along such portions of the shores as Nova Scotia, Massachusetts Bay, Long Island Sound, the coast of Southern California, the Gulf of Georgia, and the like.

The areas of distribution of the different species overlap and enclose one another so as to give us for the character of the Fauna of any particular locality three different elements of distribution; first, the cosmopolitan species, spreading over wide areas; next, the species which range over more limited areas; and finally, the local species scattered in the areas of the limited species. It is the peculiar combination of these three elements which gives to a special locality what has been called its faunal character, but owing to the intricate crossing, overlapping, and enclosing of these areas, we find it nearly impossible to draw lines along our coast which should embrace homogeneous elements. Such areas are found on our coast, extending approximately from Greenland to the northern part of Nova Scotia, from Nova Scotia to the northern part of Maine, and from Massachusetts Bay to Cape Cod; the coast of Long Island Sound and New Jersey, as far as Cape Hat-
teras, presents features of its own; the coast of the Carolinas and Georgia has likewise distinct faunal features, while Florida and the West Indies have each their peculiar Acalephs, though the boundaries of the distribution of many of the species, found in each of those divisions, extend far beyond the limits we have here assigned to the regions. On the Pacific side of North America, we find the great belt of the Northern Pacific extending from the shores of Kamtschatka to British North America; the inland sea behind Vancouver's Island and the mainland has a characteristic fauna, and along the coast of California itself, still different Medusae are found. The association of the three elements mentioned above being so different at certain localities, we naturally come to look upon them as centres from which the species of a fauna are derived, while in reality it is only the peculiar combinations of the geographical extension of each species which give the distinguishing features to each locality.

NORTH PACIFIC.

SITKA, ALEUTIAN ISLANDS, BEHRING'S STRAITS, KAMTSCHATKA.

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolina septentrionalis Mert.</td>
<td>Behring's Straits.</td>
</tr>
<tr>
<td>Janira cyanus Less.</td>
<td>Sitka</td>
</tr>
<tr>
<td>Dryopora planiformis Ag.</td>
<td>Behring's Straits.</td>
</tr>
<tr>
<td>Placellophora camtschatica Br.</td>
<td>Kamtschatka</td>
</tr>
<tr>
<td>Cypnea Postelsii Br.</td>
<td>Sitka</td>
</tr>
<tr>
<td>Cypnea ferruginea Eech.</td>
<td>Aleutian Islands; Kamtschatka.</td>
</tr>
<tr>
<td>Polyplactria helvola Br.</td>
<td>Aleutian Islands.</td>
</tr>
<tr>
<td>Melanaster Mertensii Ag.</td>
<td>Aleutian Islands.</td>
</tr>
<tr>
<td>Aeginopsis Laurentii Br.</td>
<td>Kamtschatka</td>
</tr>
<tr>
<td>Trachymena camtschaticum A. Ag.</td>
<td>Behring's Straits.</td>
</tr>
<tr>
<td>Stauropora Mertensii Br.</td>
<td>Kamtschatka</td>
</tr>
<tr>
<td>Diphasia (nigro-like)</td>
<td>Aleutian Islands.</td>
</tr>
<tr>
<td>Sertularia (abietinor-like)</td>
<td>Behring's Straits.</td>
</tr>
<tr>
<td>Catalina Greenei A. Ag.</td>
<td>Behring's Straits.</td>
</tr>
<tr>
<td>Trichoria (thujo-like)</td>
<td>Behring's Straits.</td>
</tr>
<tr>
<td>Bougainvillia Mertensii Ag.</td>
<td>Behring's Straits</td>
</tr>
<tr>
<td>Probosciaclyta flavicirrata Br.</td>
<td>Kamtschatka</td>
</tr>
</tbody>
</table>

GULF OF GEORGIA, W. T.

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolina microptera A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Placellophora chefeli A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Idria cyanina A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Hececelomamia ambiguum Br.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Cypnea Postelsii Br.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Trachymena camtschaticum A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Oceania gregaria A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Crematostoma flava A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Ziggacladyla euryecens Br.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Aegyntera ciliata Esch.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Laomedea pacifica A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyporus penicillata A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Laodicea cellulosa A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Gonionemus vertens A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Melicertum georgianum A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Bougainvillia Mertensii Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Stomatoca atrum A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Probosciaclyta flavicirrata Br.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Cerque rosaria A. Ag.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Phyating sp.</td>
<td>A. Agassiz.</td>
</tr>
<tr>
<td>Velella septentrionalis Esch.</td>
<td>A. Agassiz.</td>
</tr>
</tbody>
</table>

Mertens. A. Agassiz.
GEOGRAPHICAL DISTRIBUTION.

SAN FRANCISCO, CALIFORNIA.

Aurelia labiata Cham. & Eys. A. Agassiz.
Ptilocelphora contortechilocolpa Br. A. Agassiz.
Ptilophystis kelotol Br. A. Agassiz.
Milenaster Mertensi Ag. A. Agassiz.
Laomedea rigida A. Ag. A. Agassiz.
Laomedea pacifica A. Ag. A. Agassiz.
Polyorchis poecilirella A. Ag. A. Agassiz.
Aphrodena franciscana A. Ag. A. Agassiz.
Diplasio cornutulata A. Ag. Murray.
Sertulina anguina Trask. Trask.

WEST INDIES.

Polychonia frondosa Ag. Toey.
Pellagia euglena Pér. et Les. Swartz.
Clithea (calothelid-like). Duchassaing.
Laomedea (antipathes-like). Duchassaing.
Laomedea (gracilis-like). Weiland.
Aphrodenia pelagica MeCr. Weiland.
Aphrodenia triplica Ag. Weiland.
Aphrodenia acinaris Duch. Duchassaing.
Aphrodenia atlantica Duch. Duchassaing.

Dynamena ostreum Duch. Dynamena (disticha-like).
Dynamena (disticha-like). Duchassaing.
Zelleria simplex Duch. Duchassaing.
Tubularia Ebracteolata Duch. Duchassaing.
Tubularia Laminarum Duch. Duchassaing.
Tubularia glandulosa Duch. Duchassaing.
Tubularia pinnata Duch. Duchassaing.
Porpa reticulata Less. Guilding.
Millepora alcicornis Lin. Linnaeus.

FLORIDA REEF.

Bolina viridis Ag. L. Agassiz.
Idocyro aequalis Ag. L. Agassiz.
Polyorchia frondosa Ag. L. Agassiz.
Aurelia margueritae Ag. L. Agassiz.
Pellagia euglena Pér. et Les. L. Agassiz.
Liriope teumastroides Ag. Agassiz.
Clithea (intomarche-lyke). L. Agassiz.
Clithea (calothelid-like). L. Agassiz.
Orthocyro (poterium-like). L. Agassiz.
Laomedea (amphorid-like). L. Agassiz.
Laomedea (dickoloma-like). L. Agassiz.
Rhynchozises floridana Ag. L. Agassiz.
Zygactryza cyrnea Ag. L. Agassiz.
Eirene carunculata Ag. L. Agassiz.

Sertulina gracilis A. Ag. Trask.
Sertulina furcata Trask. Trask.
Sertulina turgida Trask. Trask.
Catalina Grecei A. Ag. Murray.
Bougainvillea Mertensi Ag. A. Agassiz.
Corcyra rosaria A. Ag. A. Agassiz.
Paripha microcephala A. Ag. A. Agassiz.
Thamnoctenae tubularoides A. Ag. A. Agassiz.
Hydra retusa Ayres. Ayres.
Physalia sp. A. Agassiz.

CHARLESTON, SOUTH CAROLINA.

Bolina littoralis MeCr. McCrady.
Muenkopoulos Gordoni Ag. L. Agassiz.
Botryoclados punctata Esch. McCrady.
Idocyro Clarkii Ag. McCrady.
Stenocyro melucygos Ag. L. Agassiz.
Cyanea verruculata Ag. L. Agassiz.
Fucoida octonaria A. Ag. McCrady.
Pertusa incolorata MeCr. McCrady.
Liriope scutigera MeCr. McCrady.

Oceania foliata Ag. McCrady.
Enechita ventriculae MeCr. McCrady.
Clithea biophora Ag. McCrady.
Platygyra cylindrica Ag. L. Agassiz.
Eupea dirivulata A. Ag. McCrady.
Obelia commissurata MeCr. L. Agassiz.
Eirene gibbosa Ag. McCrady.
Eutima mira MeCr. McCrady.
Eutima variaellis MeCr. McCrady.
<table>
<thead>
<tr>
<th>Species</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aglanthophoria pelagica</td>
<td>McCrady</td>
</tr>
<tr>
<td>Aglanthophoria tricapsis</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Pteropodocheta rhipidocheta</td>
<td>McCrady</td>
</tr>
<tr>
<td>Pteropodocheta rhipidocheta</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Pteropodocheta (Catharina-like)</td>
<td>McCrady</td>
</tr>
<tr>
<td>Dynamics carunculae</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Diplasia (nigra-like)</td>
<td>McCrady</td>
</tr>
<tr>
<td>Neomopsis Bachelor</td>
<td>McCrady</td>
</tr>
<tr>
<td>Mertensina carolinensis</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Turritopsis nutricula</td>
<td>McCrady</td>
</tr>
<tr>
<td>Stomatocara aptera</td>
<td>McCrady</td>
</tr>
<tr>
<td>Willia ornata</td>
<td>McCrady</td>
</tr>
<tr>
<td>Sertararia capressina</td>
<td>Leidy</td>
</tr>
<tr>
<td>Nemopsis lincei</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Bougainvillea superciliaris</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Mertensina carolinensis</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Eudoxia alata</td>
<td>McCrady</td>
</tr>
<tr>
<td>Eudoxia tenuissima</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Dicyodonia fulgarus</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Molkretia sp.</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Turritopsis nutricula</td>
<td>McCrady</td>
</tr>
<tr>
<td>Stomatocara aptera</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Clytia planula</td>
<td>Leidy</td>
</tr>
<tr>
<td>Clytia bicophora</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Platygypsis cygulaicra</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Eucope diaphana</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Ocelia carinivaginalis</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Lamosoma amphora</td>
<td>Leidy</td>
</tr>
<tr>
<td>Rheumatolites tenaiss</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Zygophyta groenlandicella</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Eucera alida</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Entina rigida</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Laphria carvarata</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Dynomea pumila</td>
<td>Lamx.</td>
</tr>
<tr>
<td>Oceania longula</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Cryptia intermediar</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Cryptia bicophora</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Cyathophora rotula</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Ancora carinivaga</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Cryptocoryna pachyderma</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Cryptopora diguata</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Plathyastrum platypus</td>
<td>H. J. Clark</td>
</tr>
<tr>
<td>Mammalia carinula</td>
<td>H. J. Clark</td>
</tr>
<tr>
<td>Lucernaria quadrincornis</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Halicystia auricula</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Turritopsis diemena</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Buzzard's Bay and Long Island Sound</td>
<td></td>
</tr>
<tr>
<td>Massachssetts Bay</td>
<td></td>
</tr>
<tr>
<td>Bolina alata</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Lessiusia phylactria</td>
<td>A. Agassiz</td>
</tr>
<tr>
<td>Merivisia orin Marbh</td>
<td>A. Agassiz</td>
</tr>
<tr>
<td>Pleurochroica rhipidocheta</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Rhopalina alata</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Aulonia fruhriulde</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Cyclonia carinula</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Campanella pachyderma</td>
<td>Ag. Agassiz</td>
</tr>
<tr>
<td>Cryptopora diguata</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Halicystia auricula</td>
<td>A. Agassiz</td>
</tr>
<tr>
<td>Mammalia carinula</td>
<td>H. J. Clark</td>
</tr>
<tr>
<td>Lucernaria quadrincornis</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Halicystia auricula</td>
<td>L. Agassiz</td>
</tr>
<tr>
<td>Turritopsis diemena</td>
<td>L. Agassiz</td>
</tr>
</tbody>
</table>
GEOGRAPHICAL DISTRIBUTION.

Obelia comnissuralis McCr. L. Agassiz.
Laomedea amphora Ag. L. Agassiz.
Laomedea giganta A. Ag. H. J. Clark.
Laomedea reptans Lamx. L. Agassiz.
Laomedea sp. L. Agassiz.
Stomolochium testaculatum Ag. L. Agassiz.
Holopis ocellata A. Ag. A. Agassiz.
Holopis cruciata A. Ag. A. Agassiz.
Zygopolyactyla gyroplanaica Ag. L. Agassiz.
Zygopolyactyla crassa A. Ag. A. Agassiz.
Tina formosa Ag. L. Agassiz.
Lafra cornuta Lamx. A. Agassiz.
Lafra dussosa Sars. A. Agassiz.
Melicertum campanula Pér. et Les. L. Agassiz.
Staurophora laclinata Ag. L. Agassiz.
Ptychogyna bucalta A. Ag. A. Agassiz.
Pseudula arboasa Des. Desor.
Dynomena punila Lamx. L. Agassiz.
Diplosis fallax Ag. L. Agassiz.
Diplosis rosacea Ag. L. Agassiz.
Sertuloria exspressa L. L. Agassiz.
Sertuloria argentea Ell. & Sol. L. Agassiz.
Sertuloria faleata L. L. Agassiz.
Sertuloria myriophyllus L. L. Agassiz.
Amphiocera rugosa Ag. L. Agassiz.
Cotulina tricuspisata A. Ag. L. Agassiz.

Cotulina tamarensis A. Ag. L. Agassiz.
Halicmum balenicium Johnst. L. Agassiz.
Bongnievillia superciliaria Ag. L. Agassiz.
Eudendrium dispar Ag. L. Agassiz.
Eudendrium tenuc A. Ag. A. Agassiz.
Eudendrium sp. A. Agassiz.
Lizia grata A. Ag. A. Agassiz.
Dysmorphism Physaran A. Ag. A. Agassiz.
Turris vesicaria A. Ag. A. Agassiz.
Turritisps sp. A. Agassiz.
Rhizogonum fusiformis Ag. L. Agassiz.
Clara leptocarpa Ag. L. Agassiz.
Coryne micriplis Ag. L. Agassiz.
Syndicton reticulatum A. Ag. A. Agassiz.
Gemmamaria clavipora A. Ag. A. Agassiz.
Pennnaria giertelle McCr. A. Agassiz.
Euphysa virgulata A. Ag. A. Agassiz.
Hylocolon prolific Ag. L. Agassiz.
Corymora pendula Ag. L. Agassiz.
Peripha crocata Ag. L. Agassiz.
Thaenocnidia spectabilis Ag. L. Agassiz.
Thaenocnidia tenua Ag. L. Agassiz.
Thalactoria Contouzi Ag. L. Agassiz.
Hydra gracilis Ag. (Mass.) L. Agassiz.
Hydriclinia polyelina Ag. L. Agassiz.

NORTHERN COAST OF MAINE, GRAND MANAN, AND EASTPORT.

Bolda alata Ag. W. Stimpson.
Mertoasia occa Mörelh. A. Agassiz.
Pleuronectia cladoactyla Ag. W. Stimpson.
Idia rosea Ag. W. Stimpson.
Maniaia auricula H. J. C. W. Stimpson.
Lucernaria quadricornis Mull. W. Stimpson.
Haliotis auricula H. J. C. W. Stimpson.
Haliotis salpinx H. J. C. W. Stimpson.
Oceania longa A. Ag. L. Agassiz.
Cyrtia calabris A. Ag. A. E. Verrill.
Cyrtia bicophora Ag. W. Stimpson.
Orthopryxus potomus Ag. A. E. Verrill.
Europea dyapornas Ag. A. Agassiz.
Europea gyrophormis A. Ag. J. E. Mills.
Oelone communisuratis McCr. J. E. Mills.
Laomedea amphora Ag. J. E. Mills.
Melicertum campanula P. et Les. L. Agassiz.
Staurophora laclinata Ag. W. Stimpson.
Dynomena punula Lamx. A. Agassiz.
Diplosis fallax Ag. W. Stimpson.
Sertuloria obtusifima L. J. E. Mills.
Sertuloria expressa L. W. Stimpson.

Sertuloria argentea L. J. E. Mills.
Sertuloria falcata Ag. W. Stimpson.
Sertuloria lathoscuba Stimp. W. Stimpson.
Sertuloria myriophyllum L. A. E. Verrill.
Sertuloria producta Stimp. W. Stimpson.
Amphiocera rugosa Ag. W. Stimpson.
Cotulina tricuspisata A. Ag. W. Stimpson.
Cotulina polygonis Ag. A. E. Verrill.
Cotulina tamarica A. Ag. W. Stimpson.
Halicmum balenicium Johnst. A. E. Verrill.
Halicmum miricum Johnst. W. Stimpson.
Grammarche gracile Stimp. W. Stimpson.
Grammarche robusta Stimp. W. Stimpson.
Acidae primarius Stimp. W. Stimpson.
Eubendrium dispar Ag. A. E. Verrill.
Coryne micriplis Ag. W. Stimpson.
Clara leptocarpa Ag. W. Stimpson.
Canalabrum phegusium Bl. W. Stimpson.
Corynebora pendula Ag. A. E. Verrill.
Thaenocnidia tenua Ag. W. Stimpson.
Tabularia lucina Ellis. W. Stimpson.
Tabularia Contouzi Ag. A. E. Verrill.
Hydractinia polycina Ag. A. E. Verrill.
GEOGRAPHICAL DISTRIBUTION.

NOVA SCOTIA.

Bolina alata. Ag.
Pluviotheca rhodolaetica Ag.
Ilyia rosea Ag.
Anelidium flavicula Pérs. et Les.
Cyanus arcticus Pérs. et Les.
Halichondria auricula H. J. C.
Chiton colymbus A. Ag.
Clathria bicornis Ag.
Orthopaxis potentia Ag.
Laomedea (dichotoma-like).
Laomedea (gelatinosa-like).
Laomedea (geliculata-like).
Lachca coriata Lamx.
Lachca damaea Sars.
Cosmetira sp.
Anticosti Exp.
Anticosti Exp.
Anticosti Exp.
Anticosti Exp.
Dynamena pumila Lamx.
Sertularia abietina L.
Sertularia argentea L.
Sertularia phases Dawson.
Sertularia falcata L.
Sertularia myriophyllum L.
Sertularia latisea Stimps.
Cotula triispicata A. Ag.
Cotula polgynia Ag.
Cotula tamarisc A. Ag.
Halicium maricatum Johnst.
Theonaria thyja Flem.
Eulondium (ramonum-like).
Tubularia barzny Ellis.
Tubularia Couthouyi Ag.
Dawson.
Dawson.
Dawson.
Dawson.
Dawson.
Dawson.
Dawson.

GREENLAND.

Mertensia arum Mörch.
Pluviotheca rhodolaetica Ag.
Ilyia cucumis Less.
Ilyia borealis Less.
Anelidium flavicula Pérs. et Les.
Cyanus arcticus Pérs. et Les.
Chrysomaal hypotoma Pérs. et Les.
Thracinaea digitale A. Ag.
Manaminia auricula H. J. C.
Laceraria quadricornis Müll.
Halichondria auricula H. J. C.
Mollusca biumpa Fab.
Turbia diadema Aeg.
Campodavalia colymbus Mörch.
Campodavalia olivacea Lamx.
Eucepea dinphana Ag.
Fabricius.
Fabricius.
Fabricius.
Fabricius.
Fabricius.
Martens.
Fabricius.
Fabricius.
Steinstrup.
Mörch.
Mörch.
Mörch.

Zygolaetia groenlandica P. et Les. Fabricius.
Melicertium campaua Pérs. et Les. Fabricius.
Dynamena pumila Lamx.
Sertularia abietina L.
Sertularia argentea L.
Amphirocha rugosa Ag.
Cotula polgynia Ag.
Halicium maricatum Johnst.
Bougainvillea supercilarius Ag.
Coryne mirabilis Ag.
Coryne pusieta Gürt.
Coryne muscosa Johnst.
Caudalabrun phrygium Bl.
Tubularia bolinsea Linm.
Hydractina polyclina Ag.

Sarine.
Mörch.
Mörch.
Fabricius.
Mörch.
SYSTEMATIC TABLE

OF THE ORDERS AND FAMILIES OF NORTH AMERICAN ACVLEPILE DESCRIBED IN THIS VOLUME.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Geryonidæ Ag.</td>
<td>Saccæ Ag.</td>
<td>Geryonidæ Ag.</td>
<td>Cyaneidae Ag.</td>
<td>Cyaneidae Ag.</td>
<td>Saccæ Ag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polyplacidae Ag.</td>
<td>Saccæ Ag.</td>
<td>Polyplacidae Ag.</td>
<td>Saccæ Ag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saccæ Ag.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAGE

Order HYDROIDE Johnst.	64
Suborder Sertulariæ Ag.	68
Family Oceanidæ Esch.	68
Family Eucopidae Esch.	81
Family Geryonidæ Esch.	35
Family Polyplacidae Ag.	112
Family Cyaneidae Ag.	118
Family Saccæ Ag.	121
Family Saccæ Ag.	128
Family Saccæ Ag.	139
Family Saccæ Ag.	141
Suborder Tubulariæ Ag.	149
Family Nemoçizidæ Ag.	149
Family Nemoçizidæ Ag.	152
Family Nemoçizidæ Ag.	154
Family Nemoçizidæ Ag.	164
Family Nemoçizidæ Ag.	171
Family Nemoçizidæ Ag.	175
Family Nemoçizidæ Ag.	183
Family Nemoçizidæ Ag.	186
Family Nemoçizidæ Ag.	189
Family Nemoçizidæ Ag.	197
Family Nemoçizidæ Ag.	198
Suborder Diphycæ Ag.	199
Family Diphycæ Ag.	199
Family Diphycæ Ag.	200
Suborder Physophoræ Goldf.	200
Family Agalinidæ Brunn.	200
Suborder Physophoræ Goldf.	214
Family Physalidæ Brunn.	214
Family Physalidæ Brunn.	216
Family Physalidæ Brunn.	218
Suborder Tabulæ Ag.	219
Family Milleporidæ Ag.	219
INDEX OF GENERA AND SPECIES.

[Synonymes are in Italics.]

<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acaulis Stimps.</td>
<td>154</td>
</tr>
<tr>
<td>primarinus Stimps.</td>
<td>154</td>
</tr>
<tr>
<td>Aeluroides Less.</td>
<td>218</td>
</tr>
<tr>
<td>Acrocoriulf Mey.</td>
<td>184</td>
</tr>
<tr>
<td>Eginopsis J. Müll.</td>
<td>51</td>
</tr>
<tr>
<td>Eginopsis Br.</td>
<td>54</td>
</tr>
<tr>
<td>Laurentii Br.</td>
<td>54</td>
</tr>
<tr>
<td>Erucaea Pér. et Les.</td>
<td>109</td>
</tr>
<tr>
<td>abida A. Agass.</td>
<td>119</td>
</tr>
<tr>
<td>ciliaris Esch.</td>
<td>109</td>
</tr>
<tr>
<td>globularis Mörch</td>
<td>103</td>
</tr>
<tr>
<td>groenlandica Pér. et Les.</td>
<td>103</td>
</tr>
<tr>
<td>Aglaophenia Lamx.</td>
<td>139</td>
</tr>
<tr>
<td>cristata McCr.</td>
<td>140</td>
</tr>
<tr>
<td>franciscana A. Agass.</td>
<td>140</td>
</tr>
<tr>
<td>pelagica McCr.</td>
<td>139</td>
</tr>
<tr>
<td>trifida Agass.</td>
<td>140</td>
</tr>
<tr>
<td>tricuspis McCr.</td>
<td>140</td>
</tr>
<tr>
<td>Aglaophena penicillata Bl.</td>
<td>119</td>
</tr>
<tr>
<td>Alicaire Less.</td>
<td>14</td>
</tr>
<tr>
<td>vermicularis Gould</td>
<td>15</td>
</tr>
<tr>
<td>Acronia echinata Gould</td>
<td>198</td>
</tr>
<tr>
<td>Amphitrocha Agass.</td>
<td>146</td>
</tr>
<tr>
<td>cincta Agass.</td>
<td>146</td>
</tr>
<tr>
<td>rugosa Agass.</td>
<td>146</td>
</tr>
<tr>
<td>Anais Less.</td>
<td>14</td>
</tr>
<tr>
<td>Arethusa Brown.</td>
<td>214</td>
</tr>
<tr>
<td>Armenianarum Costa</td>
<td>218</td>
</tr>
<tr>
<td>Atractylis Wright</td>
<td>122</td>
</tr>
<tr>
<td>Aurelia Pér. et Les.</td>
<td>41</td>
</tr>
<tr>
<td>aurita Gould</td>
<td>42</td>
</tr>
<tr>
<td>flavula Pér. et Les.</td>
<td>42</td>
</tr>
<tr>
<td>labia Cha. et Eys.</td>
<td>43</td>
</tr>
<tr>
<td>marginalis Agass.</td>
<td>43</td>
</tr>
<tr>
<td>sex-ocularis Mörch</td>
<td>42</td>
</tr>
<tr>
<td>Beroe Brown.</td>
<td>35</td>
</tr>
<tr>
<td>eculum Mod.</td>
<td>26</td>
</tr>
<tr>
<td>eculum Fab.</td>
<td>36</td>
</tr>
<tr>
<td>eculum Mert.</td>
<td>34</td>
</tr>
<tr>
<td>glandiformis Mert.</td>
<td>34</td>
</tr>
<tr>
<td>ocellata Esch.</td>
<td>35</td>
</tr>
<tr>
<td>ochru Fab.</td>
<td>26</td>
</tr>
<tr>
<td>pileus Fab.</td>
<td>30</td>
</tr>
<tr>
<td>Beroe (continued)</td>
<td></td>
</tr>
<tr>
<td>pileus Scul.</td>
<td>26</td>
</tr>
<tr>
<td>punctata Cham. et Eys.</td>
<td>35</td>
</tr>
<tr>
<td>Biblis Less.</td>
<td>41</td>
</tr>
<tr>
<td>Bolina Mert.</td>
<td>14</td>
</tr>
<tr>
<td>alata Agass.</td>
<td>15</td>
</tr>
<tr>
<td>littoralis McCr.</td>
<td>19</td>
</tr>
<tr>
<td>micropera A. Agass.</td>
<td>19</td>
</tr>
<tr>
<td>septentrionalis Agass.</td>
<td>19</td>
</tr>
<tr>
<td>septentrionalis Mert.</td>
<td>14</td>
</tr>
<tr>
<td>vitrea Agass.</td>
<td>19</td>
</tr>
<tr>
<td>Bougainvillia Less.</td>
<td>155</td>
</tr>
<tr>
<td>Bougainvillia Less.</td>
<td>152</td>
</tr>
<tr>
<td>Mertensi Agass.</td>
<td>152</td>
</tr>
<tr>
<td>supercilialis Agass.</td>
<td>153</td>
</tr>
<tr>
<td>Calomella Oken</td>
<td>159</td>
</tr>
<tr>
<td>Calicella Hincks</td>
<td>77</td>
</tr>
<tr>
<td>Candelabrum Bl.</td>
<td>186</td>
</tr>
<tr>
<td>phrygium Bl.</td>
<td>186</td>
</tr>
<tr>
<td>Campaneliya Less.</td>
<td>130</td>
</tr>
<tr>
<td>Campanella Bl.</td>
<td>51</td>
</tr>
<tr>
<td>campanula Mörch</td>
<td>130</td>
</tr>
<tr>
<td>Fabricii Less.</td>
<td>130</td>
</tr>
<tr>
<td>pachyderma A. Agass.</td>
<td>52</td>
</tr>
<tr>
<td>Campanularia Lamx.</td>
<td>93</td>
</tr>
<tr>
<td>dumosa Johnst.</td>
<td>126</td>
</tr>
<tr>
<td>dumosa Leidy</td>
<td>122</td>
</tr>
<tr>
<td>nodiformis McCr.</td>
<td>80</td>
</tr>
<tr>
<td>syringa Stimps.</td>
<td>70</td>
</tr>
<tr>
<td>veolalis Alder</td>
<td>77</td>
</tr>
<tr>
<td>veolalis Leidy</td>
<td>80</td>
</tr>
<tr>
<td>Campanula Van Ben.</td>
<td>122</td>
</tr>
<tr>
<td>Cassiopea Til.</td>
<td></td>
</tr>
<tr>
<td>frondosa Esch.</td>
<td>41</td>
</tr>
<tr>
<td>Pallas Pér. et Les.</td>
<td>41</td>
</tr>
<tr>
<td>Cephala rhizoma Gibbes</td>
<td>40</td>
</tr>
<tr>
<td>Cychusra Esch.</td>
<td>48</td>
</tr>
<tr>
<td>helvola Less.</td>
<td>50</td>
</tr>
<tr>
<td>melanaster Br.</td>
<td>50</td>
</tr>
<tr>
<td>Chrysonaura Geg.</td>
<td>216</td>
</tr>
<tr>
<td>Circe Mert.</td>
<td>55</td>
</tr>
<tr>
<td>camtechania Br.</td>
<td>55</td>
</tr>
<tr>
<td>digitalis Mörch</td>
<td>57</td>
</tr>
</tbody>
</table>
INDEX OF GENERA AND SPECIES.

Circe impatiens Agass. 55
Clava Gymelin. 170
leptostyla Agass. 170
multicorais Stimp. 170
squamae Morch. 198
Clavula Wright. 164
Clawia Less. 41
Clytia Lam. 77, 81
bicephora Agass. 78
cylindrica Agass. 78
cylindrica Agass. 80
intermedia Agass. 77
volubilis A. Agass. 77
Corymapha Sars. 192
natans Stimp. 192
pendula Agass. 192
physa Morch. 186
Coryne Gart. 175
mirabilis Agass. 175
rosaria A. Agass. 176
Corynitis McCr. 183
Agassizii McCr. 183
Cosmetria Forbes. 127
Cosmetria sp. 128
Cotulina Agass. 146
Greene A. Agass. 147
polyzonias Agass. 146
tamarica A. Agass. 147
tricuspidata A. Agass. 146
Crematostoma A. Agass. 108
flava A. Agass. 108
Cucullus Q. & G. 199
Cunina Esch. 51
octonaria McCr. 51
Cyanea Per. et Les. 44
ambigu Less. 43
arctica Per. et Les. 44
ferruginea Esch. 47
fulva Agass. 46
Postelii Br. 47
Postelsii Gould. 44
versicolor Agass. 46
Cyaneopsis behringiana Br. 47
Cyclusia Less. 35
punctata Less. 35
Cylippe Esch. 29
cucullus Esch. 25
cucuis Less. 25
ovum Esch. 25
pilens Gould. 30
Cytaea Sars. 161
Dactylometra Agass. 48
quinquevitta Agass. 48
Diana Delle Chiaje. 113
Donana Q. & G. 60
Dianax Lamk. 47
Dianax

cyanea Lamk. 47
dendricola Lamk. 47
Diphasia Agass. 142
corniculata Agass. 143
fallax Agass. 142
rosea Agass. 142
Diphyes Cuv. 199
pusilla McCr. 199
Diploceraspedon Br. 41
Diplostenus McCr. 180
cervicata McCr. 181
cornes A. Agass. 181
trunculata McCr. 181
Dryodora Agass. 34
glandiformis Agass. 34
Dynamena Lamx. 141
cornicula McCr. 142
pelagica Br. 139
pumila Lamx. 141
Dysmorphosa Phil. 163
fulgurans A. Agass. 163
Ectopleura Agass. 199
turricula Agass. 191
ochracea A. Agass. 191
Eirene Esch. 112, 113
cornicula Agass. 112
digitata Esch. 57
gibbosa Agass. 112
Epenteisis McCr. 70
falcata McCr. 70
Ephrya Per. et Les. 41
tolstadeta Gould. 42
Ersare Esch. 199
Eschscholtzia Less. 34
glandiformis Less. 34
Euchelota McCr. 74
duodecimais A. Agass. 75
ventriculatis McCr. 74
Eucype Geo. 83
alternata A. Agass. 86
articulata A. Agass. 89
diaphana Agass. 83
diaphana Agass. 86
divariata A. Agass. 91
fusciformis A. Agass. 90
parasitica A. Agass. 87
polygyna A. Agass. 86
pyriformis A. Agass. 88
Eucyrna Leidy. 186
clegans Leidy. 187
Eudendrium Ehrenr. 159
cingulum Stimp. 153
dispar Agass. 159
ruminosum Johnst. 160
ruminosum McCr. 160
<table>
<thead>
<tr>
<th>Index of Genera and Species</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budendrium (continued)</td>
<td></td>
</tr>
<tr>
<td>tenue A. Agass.</td>
<td>160</td>
</tr>
<tr>
<td>Eudoxia Esch.</td>
<td>199</td>
</tr>
<tr>
<td>alata McCr.</td>
<td>199</td>
</tr>
<tr>
<td>Euphysa Forbes</td>
<td>189</td>
</tr>
<tr>
<td>virgilata A. Agass.</td>
<td>189</td>
</tr>
<tr>
<td>Eurybta Esch.</td>
<td>60</td>
</tr>
<tr>
<td>Eurybiopsis GGG.</td>
<td>60</td>
</tr>
<tr>
<td>Eutima McCr.</td>
<td>116</td>
</tr>
<tr>
<td>limpidia A. Agass.</td>
<td>116</td>
</tr>
<tr>
<td>mira McCr.</td>
<td>116</td>
</tr>
<tr>
<td>pyramidalis Agass.</td>
<td>118</td>
</tr>
<tr>
<td>variabilis McCr.</td>
<td>116</td>
</tr>
<tr>
<td>Evagora Fér. et Les.</td>
<td>41</td>
</tr>
<tr>
<td>Foveola Fér. et Les.</td>
<td>51</td>
</tr>
<tr>
<td>octonaria A. Agass.</td>
<td>51</td>
</tr>
<tr>
<td>Gemmaria McCr.</td>
<td>184</td>
</tr>
<tr>
<td>cladophora A. Agass.</td>
<td>184</td>
</tr>
<tr>
<td>gemmosa McCr.</td>
<td>184</td>
</tr>
<tr>
<td>Geryonita Esch.</td>
<td>60</td>
</tr>
<tr>
<td>Geryonophysis Forbes</td>
<td>112</td>
</tr>
<tr>
<td>Globiceps Ayres</td>
<td>186</td>
</tr>
<tr>
<td>tessel Ayres</td>
<td>187</td>
</tr>
<tr>
<td>Gonionemus A. Agass.</td>
<td>128</td>
</tr>
<tr>
<td>vertens A. Agass.</td>
<td>128</td>
</tr>
<tr>
<td>Grammaira Stimps.</td>
<td>148</td>
</tr>
<tr>
<td>gracilis Stimps.</td>
<td>148</td>
</tr>
<tr>
<td>robusta Stimps.</td>
<td>148</td>
</tr>
<tr>
<td>Halecium Oken.</td>
<td>147</td>
</tr>
<tr>
<td>halecinum Johnst.</td>
<td>148</td>
</tr>
<tr>
<td>muricatum Johnst.</td>
<td>147</td>
</tr>
<tr>
<td>Halicystus H. J. Clark</td>
<td>62</td>
</tr>
<tr>
<td>auricula H. J. Clark.</td>
<td>62</td>
</tr>
<tr>
<td>salpinx H. J. Clark.</td>
<td>64</td>
</tr>
<tr>
<td>Halimocystthus H. J. Clark</td>
<td>61</td>
</tr>
<tr>
<td>platypus H. J. Clark.</td>
<td>61</td>
</tr>
<tr>
<td>Halocystis Agass.</td>
<td>183</td>
</tr>
<tr>
<td>spiralis Agass.</td>
<td>183</td>
</tr>
<tr>
<td>Halopsis A. Agass.</td>
<td>99</td>
</tr>
<tr>
<td>cruciata A. Agass.</td>
<td>102</td>
</tr>
<tr>
<td>ocellata A. Agass.</td>
<td>99</td>
</tr>
<tr>
<td>Heccocedecoma Br.</td>
<td>43</td>
</tr>
<tr>
<td>ambiguum Br.</td>
<td>43</td>
</tr>
<tr>
<td>Hermia Johnst.</td>
<td>175</td>
</tr>
<tr>
<td>Hippocrene McCr.</td>
<td>155</td>
</tr>
<tr>
<td>Hippocrene Meet.</td>
<td>152</td>
</tr>
<tr>
<td>Bougainvialeii Br.</td>
<td>152</td>
</tr>
<tr>
<td>Bougainvialeii Gould</td>
<td>153</td>
</tr>
<tr>
<td>carolineensis McCr.</td>
<td>156</td>
</tr>
<tr>
<td>supercilianis Agass.</td>
<td>153</td>
</tr>
<tr>
<td>Hybocodon Agass.</td>
<td>193</td>
</tr>
<tr>
<td>prolifer Agass.</td>
<td>193</td>
</tr>
<tr>
<td>Hydra Linn.</td>
<td>197</td>
</tr>
<tr>
<td>carnea Agass.</td>
<td>197</td>
</tr>
<tr>
<td>Hydra (continued)</td>
<td></td>
</tr>
<tr>
<td>gracilis Agass.</td>
<td>197</td>
</tr>
<tr>
<td>tenuis Ayres</td>
<td>197</td>
</tr>
<tr>
<td>squamanula Fab.</td>
<td>198</td>
</tr>
<tr>
<td>Hydractinia Van Ben.</td>
<td>198</td>
</tr>
<tr>
<td>echinata Leidy</td>
<td>198</td>
</tr>
<tr>
<td>polyclina Agass.</td>
<td>198</td>
</tr>
<tr>
<td>Idyia Flem.</td>
<td>35</td>
</tr>
<tr>
<td>borealis Less.</td>
<td>36</td>
</tr>
<tr>
<td>cucumis Less.</td>
<td>36</td>
</tr>
<tr>
<td>erythrina A. Agass.</td>
<td>38</td>
</tr>
<tr>
<td>ovata Less.</td>
<td>35</td>
</tr>
<tr>
<td>rosula Agass.</td>
<td>36</td>
</tr>
<tr>
<td>Idyopsis Agass.</td>
<td>39</td>
</tr>
<tr>
<td>affinis Agass.</td>
<td>40</td>
</tr>
<tr>
<td>Clarkii Agass.</td>
<td>39</td>
</tr>
<tr>
<td>Janira Oken</td>
<td>34</td>
</tr>
<tr>
<td>cucumis Less.</td>
<td>34</td>
</tr>
<tr>
<td>Lafesia Lamx.</td>
<td>122</td>
</tr>
<tr>
<td>calcarea A. Agass.</td>
<td>122</td>
</tr>
<tr>
<td>cornuta Agass.</td>
<td>122</td>
</tr>
<tr>
<td>cornuta Lamx.</td>
<td>126</td>
</tr>
<tr>
<td>dumas Sars</td>
<td>126</td>
</tr>
<tr>
<td>Laodicea Agass.</td>
<td>122</td>
</tr>
<tr>
<td>Laodicea Less.</td>
<td>127</td>
</tr>
<tr>
<td>calcarea A. Agass.</td>
<td>122</td>
</tr>
<tr>
<td>cellularia A. Agass.</td>
<td>127</td>
</tr>
<tr>
<td>Laomedea Lamx.</td>
<td>93</td>
</tr>
<tr>
<td>amphora Agass.</td>
<td>93</td>
</tr>
<tr>
<td>dichotoma Leidy</td>
<td>91</td>
</tr>
<tr>
<td>divaricata McCr.</td>
<td>91</td>
</tr>
<tr>
<td>gelatinosa Leidy</td>
<td>88</td>
</tr>
<tr>
<td>gelatinosa Gould</td>
<td>91</td>
</tr>
<tr>
<td>gigantea A. Agass.</td>
<td>94</td>
</tr>
<tr>
<td>pacifica A. Agass.</td>
<td>94</td>
</tr>
<tr>
<td>rigida A. Agass.</td>
<td>93</td>
</tr>
<tr>
<td>Lesueuria Edw.</td>
<td>23</td>
</tr>
<tr>
<td>hyboptera A. Agass.</td>
<td>23</td>
</tr>
<tr>
<td>Liriope GGG.</td>
<td>60</td>
</tr>
<tr>
<td>scutigera McCr.</td>
<td>60</td>
</tr>
<tr>
<td>tenuurostris Agass.</td>
<td>60</td>
</tr>
<tr>
<td>Lizzia Forbes</td>
<td>161</td>
</tr>
<tr>
<td>grata A. Agass.</td>
<td>161</td>
</tr>
<tr>
<td>Lucernaria Müll.</td>
<td>62</td>
</tr>
<tr>
<td>auricula Fab.</td>
<td>62</td>
</tr>
<tr>
<td>auricula Müll.</td>
<td>63</td>
</tr>
<tr>
<td>Fabricii Agass.</td>
<td>52</td>
</tr>
<tr>
<td>fascicularis Flem.</td>
<td>62</td>
</tr>
<tr>
<td>sectorelata Lamx.</td>
<td>63</td>
</tr>
<tr>
<td>phrygia Fab.</td>
<td>186</td>
</tr>
<tr>
<td>quadricornis Müll.</td>
<td>62</td>
</tr>
<tr>
<td>typica Greene</td>
<td>62</td>
</tr>
</tbody>
</table>
INDEX OF GENERA AND SPECIES.

Manania Il. J. Clark ... 61
auricula Il. J. Clark ... 62
Margelis Steenst. ... 155
carolinensis Agass ... 156
Medea Esch. ... 35
fulgens Esch. ... 36
Medusa Linn. ... 41
acporea Fab. ... 103
aurea Fab. ... 42
boreae Linn. ... 35
binomena Fab. ... 88
campunula Fab. ... 139
campunulata Bosc ... 130
capillata Fab. ... 44
digitalis Fab. ... 57
frondosa Pall. ... 41
labata Esch. ... 43
pelagia Linn. ... 47
Melaaster Agass. ... 50
Mertensii Agass. ... 50
Melicerta Pér. et Les ... 130
campunula Pér. et Les ... 130
Melicertum Esch. ... 119
Melicertum Oken ... 130
campunula Esch. ... 130
georgicum A. Agass. ... 135
pencillata Less. ... 119
pencillatum Esch. ... 119
Mertensia Gegen. ... 34
Mertensia Less. ... 26
cucullus Agass. ... 26
quiliformis Gegen. ... 34
ovum Mörich ... 26
Scorbygjii Less. ... 26
Mesoneura ceruleascens Br. ... 108
Millepora Linn. ... 219
alcoornis Linn. ... 219
Mnemia Sars ... 14
Mnemiopsis Agass. ... 19
Gardien Agass. ... 29
Lédyi A. Agass. ... 29
Monocerospedon Br. ... 41
Myriothela Sars ... 186
Nanomia A. Agass. ... 200
cara A. Agass. ... 200
Nemopsis Agass. ... 149
Bachei Agass. ... 149
Gibbesi McCr. ... 149
Obelia Pér. et Les. ... 91
communisuralis McCr. ... 91
Oceanita Act. ... 164
Oceania Pér. et Les. ... 70
follicata Agass. ... 70
gregaria A. Agass. ... 74
languida A. Agass. ... 70
Oceania (continued)
tubulosa Gould ... 175
Ocyroe Pér. et Les. ... 41
Ocyroe Rang ... 25
labiate Bl. ... 43
maculata Rang ... 25
Orthopexis Agass. ... 81
poterium Agass. ... 81
Parypha Agass. ... 194
cristata Agass. ... 194
crocea Agass. ... 195
microcephala A. Agass. ... 195
Pelagia Pér. et Les. ... 47
americanu Pér. et Les. ... 47
Brandii Agass. ... 48
cyanella Pér. et Les. ... 47
denticulata Br. ... 48
denticulata Pér. et Les. ... 47
nocticula Cham. ... 47
quapecirro Des. ... 48
Pennaria Goldf. ... 156
gibbosa Agass. ... 156
tiarella McCr. ... 157
Persa McCr. ... 60
incolorata McCr. ... 60
Phacellophora Br. ... 44
commeschia Br. ... 44
Phialidium Leuck. ... 70
Phorii McCr. ... 112
gibbosa McCr. ... 112
Physalia Laxm. ... 214
Arthusa Til. ... 214
auricera McCr. ... 214
pelagico Bosc ... 214
Platypexis Agass. ... 77
Platypexis Agass. ... 80
cylindrica Agass. ... 80
Pleurobranchia Flem. ... 29
Bachei A. Agass. ... 34
rhododactyla Agass. ... 50
Scorbygjii Mörich ... 50
Plumularia Laxm. ... 159
Plumularia Laxm. ... 140
arborea Des. ... 140
falcata Johnston ... 141
franciscana Trask ... 140
gracilis Murr. ... 145
myrigoschium Johnston ... 145
pelagica Laxm. ... 159
quadridens McCr. ... 140
strattonides Murr. ... 140
Podocoryne Sars ... 163
Polybostricha Br. ... 50
helvola Br. ... 50
Polybroschisma Guld. ... 218
linnana Guld. ... 218
<table>
<thead>
<tr>
<th>Index of Genera and Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyclonia Br.</td>
<td>41</td>
</tr>
<tr>
<td>Polyorchis A. Agass.</td>
<td>119</td>
</tr>
<tr>
<td>Porpita Lamx.</td>
<td>218</td>
</tr>
<tr>
<td>Proboscidactyla Br.</td>
<td>173</td>
</tr>
<tr>
<td>Ptychogena A. Agass.</td>
<td>137</td>
</tr>
<tr>
<td>Pyridium Leuck.</td>
<td>194</td>
</tr>
<tr>
<td>Ratario Esch.</td>
<td>216</td>
</tr>
<tr>
<td>Rhacostoma Agass.</td>
<td>103</td>
</tr>
<tr>
<td>Rhegmatodes A. Agass.</td>
<td>95</td>
</tr>
<tr>
<td>Rhizogeton Agass.</td>
<td>170</td>
</tr>
<tr>
<td>Sapphithoza Sars.</td>
<td>41</td>
</tr>
<tr>
<td>Sertularia Linn.</td>
<td>143</td>
</tr>
<tr>
<td>Sertularia (continued)</td>
<td></td>
</tr>
<tr>
<td>Siliquaria Mey.</td>
<td>81</td>
</tr>
<tr>
<td>Spadix Gosse</td>
<td>186</td>
</tr>
<tr>
<td>Staurophora Br.</td>
<td>136</td>
</tr>
<tr>
<td>Tethysina Agass.</td>
<td>136</td>
</tr>
<tr>
<td>Silex McD.</td>
<td>175</td>
</tr>
<tr>
<td>Stapula Sars</td>
<td>175</td>
</tr>
<tr>
<td>Stomobrachium Forbes</td>
<td>139</td>
</tr>
<tr>
<td>Stomolophus Agass.</td>
<td>49</td>
</tr>
<tr>
<td>Stomotoca Agass.</td>
<td>168</td>
</tr>
<tr>
<td>Strobila Sars</td>
<td>41</td>
</tr>
<tr>
<td>Syncorypha Ehrenk.</td>
<td>175</td>
</tr>
<tr>
<td>Syndyctyon A. Agass.</td>
<td>177</td>
</tr>
<tr>
<td>Thamnocoenidia Agass.</td>
<td>195</td>
</tr>
<tr>
<td>Thamnolus Esch.</td>
<td>70</td>
</tr>
<tr>
<td>Thamnolus Gegen.</td>
<td>127</td>
</tr>
<tr>
<td>Thamnolus Murr.</td>
<td>83</td>
</tr>
<tr>
<td>Thalassa Linn.</td>
<td>147, 159</td>
</tr>
<tr>
<td>Ticra Agass.</td>
<td></td>
</tr>
<tr>
<td>Thua Fals.</td>
<td>142</td>
</tr>
<tr>
<td>Tiaropsis Agass.</td>
<td>69</td>
</tr>
<tr>
<td>Tintari Fals.</td>
<td>148</td>
</tr>
<tr>
<td>Tima Esch.</td>
<td>113</td>
</tr>
<tr>
<td>Toma Agass.</td>
<td>69</td>
</tr>
<tr>
<td>Trachynema Gegen.</td>
<td>55</td>
</tr>
<tr>
<td>Trachypogas Agass.</td>
<td>77</td>
</tr>
<tr>
<td>Tubularia Linn.</td>
<td>196</td>
</tr>
<tr>
<td>Couthory Agass.</td>
<td>196</td>
</tr>
<tr>
<td>Cristata McCr.</td>
<td>194</td>
</tr>
<tr>
<td>Indica Gould.</td>
<td>196</td>
</tr>
<tr>
<td>Larynx Ellis</td>
<td>196</td>
</tr>
<tr>
<td>Ranwora Gould</td>
<td>153</td>
</tr>
<tr>
<td>Turril Couth.</td>
<td>175</td>
</tr>
<tr>
<td>Turris Linn.</td>
<td>164</td>
</tr>
<tr>
<td>Digitalis Morch.</td>
<td>57</td>
</tr>
</tbody>
</table>
INDEX OF GENERA AND SPECIES.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turris (continued)</td>
<td>vesicaria A. Agass.</td>
<td>164</td>
</tr>
<tr>
<td>Turritopsis McCr.</td>
<td>nutricula McCr.</td>
<td>167</td>
</tr>
<tr>
<td>Velella Lamx.</td>
<td>nautica Bosc</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>septentrionalis Esch.</td>
<td>217</td>
</tr>
<tr>
<td>Willia Forbes</td>
<td>ornata McCr.</td>
<td>171</td>
</tr>
<tr>
<td>Wrightia Agass.</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Zanclea McCr.</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>gemmola McCr.</td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>Zygodactyla Br.</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>coerulecens Br.</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>crassa A. Agass.</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>cyanea Agass.</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>groenlandica Agass.</td>
<td></td>
<td>103</td>
</tr>
</tbody>
</table>

THE END.